{"title":"补骨脂素通过内质网应激抑制人骨肉瘤细胞增殖并促进细胞凋亡。","authors":"Shubo Li, Hongqin Tu","doi":"10.5603/FHC.a2022.0010","DOIUrl":null,"url":null,"abstract":"INTRODUCTION\n. Psoralen is a main active component of Psoralea corylifolia Linn. (Leguminosae). Psoralen has been reported to show antitumor effects and activity to accelerate osteoblastic proliferation. Nevertheless, the antitumor mechanism of psoralen in osteosarcoma has never been elucidated. The current study is aimed to investigate the therapeutic function of psoralen in human osteosarcoma cells and its potential regulatory mechanism.\n\n\nMATERIAL AND METHODS\nEffects of psoralen (0-70 μg/mL) on the viability of two osteosarcoma cell lines cultured for 48 h was evaluated by MTT assays. The concentration of IC₁₀ (8 μg/mL for MG-63 cells and 9 μg/mL for U2OS cells) was regarded to be a non-cytotoxic dose selected as the working concentration in the subsequent experiments. Effects of psoralen on cell proliferation for 48 h was assessed by colony formation assays. Flow cytometry analyses were performed to measure cell cycle and apoptosis. RT-qPCR and Western blotting were carried out to assess RNA expression and protein levels of endoplasmic reticulum (ER) stress associated factors.\n\n\nRESULTS\nPsoralen inhibited osteosarcoma cell viability (IC₅₀ 25 μg/mL for MG-63 cells and IC₅₀ 40 μg/mL for U2OS cells) in a dose-dependent manner and growth inhibition rate reached the highest level when cells were treated with 70 μg/mL psoralen. Psoralen induced cell cycle arrest in the G0/G1 phase and promoted apoptosis of both MG-63 and U2OS cells. The treatment of psoralen resulted in an increase in ATF-6 and CHOP protein levels as well as a decrease in Bcl-2 protein level, indicating that cell apoptosis induced by psoralen was associated with ER stress. Treatment with 4-PBA, the ER stress inhibitor, attenuated the ability of psoralen to promote apoptosis of MG-63 and U2OS cells.\n\n\nCONCLUSIONS\nPsoralen showed growth-inhibitory effects in osteosarcoma cells, and induced apoptosis via the ER stress pathway, which might be a potential drug to suppress the development of osteosarcoma.","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Psoralen inhibits the proliferation and promotes apoptosis through endoplasmic reticulum stress in human osteosarcoma cells.\",\"authors\":\"Shubo Li, Hongqin Tu\",\"doi\":\"10.5603/FHC.a2022.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION\\n. Psoralen is a main active component of Psoralea corylifolia Linn. (Leguminosae). Psoralen has been reported to show antitumor effects and activity to accelerate osteoblastic proliferation. Nevertheless, the antitumor mechanism of psoralen in osteosarcoma has never been elucidated. The current study is aimed to investigate the therapeutic function of psoralen in human osteosarcoma cells and its potential regulatory mechanism.\\n\\n\\nMATERIAL AND METHODS\\nEffects of psoralen (0-70 μg/mL) on the viability of two osteosarcoma cell lines cultured for 48 h was evaluated by MTT assays. The concentration of IC₁₀ (8 μg/mL for MG-63 cells and 9 μg/mL for U2OS cells) was regarded to be a non-cytotoxic dose selected as the working concentration in the subsequent experiments. Effects of psoralen on cell proliferation for 48 h was assessed by colony formation assays. Flow cytometry analyses were performed to measure cell cycle and apoptosis. RT-qPCR and Western blotting were carried out to assess RNA expression and protein levels of endoplasmic reticulum (ER) stress associated factors.\\n\\n\\nRESULTS\\nPsoralen inhibited osteosarcoma cell viability (IC₅₀ 25 μg/mL for MG-63 cells and IC₅₀ 40 μg/mL for U2OS cells) in a dose-dependent manner and growth inhibition rate reached the highest level when cells were treated with 70 μg/mL psoralen. Psoralen induced cell cycle arrest in the G0/G1 phase and promoted apoptosis of both MG-63 and U2OS cells. The treatment of psoralen resulted in an increase in ATF-6 and CHOP protein levels as well as a decrease in Bcl-2 protein level, indicating that cell apoptosis induced by psoralen was associated with ER stress. Treatment with 4-PBA, the ER stress inhibitor, attenuated the ability of psoralen to promote apoptosis of MG-63 and U2OS cells.\\n\\n\\nCONCLUSIONS\\nPsoralen showed growth-inhibitory effects in osteosarcoma cells, and induced apoptosis via the ER stress pathway, which might be a potential drug to suppress the development of osteosarcoma.\",\"PeriodicalId\":12322,\"journal\":{\"name\":\"Folia histochemica et cytobiologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia histochemica et cytobiologica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5603/FHC.a2022.0010\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia histochemica et cytobiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/FHC.a2022.0010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Psoralen inhibits the proliferation and promotes apoptosis through endoplasmic reticulum stress in human osteosarcoma cells.
INTRODUCTION
. Psoralen is a main active component of Psoralea corylifolia Linn. (Leguminosae). Psoralen has been reported to show antitumor effects and activity to accelerate osteoblastic proliferation. Nevertheless, the antitumor mechanism of psoralen in osteosarcoma has never been elucidated. The current study is aimed to investigate the therapeutic function of psoralen in human osteosarcoma cells and its potential regulatory mechanism.
MATERIAL AND METHODS
Effects of psoralen (0-70 μg/mL) on the viability of two osteosarcoma cell lines cultured for 48 h was evaluated by MTT assays. The concentration of IC₁₀ (8 μg/mL for MG-63 cells and 9 μg/mL for U2OS cells) was regarded to be a non-cytotoxic dose selected as the working concentration in the subsequent experiments. Effects of psoralen on cell proliferation for 48 h was assessed by colony formation assays. Flow cytometry analyses were performed to measure cell cycle and apoptosis. RT-qPCR and Western blotting were carried out to assess RNA expression and protein levels of endoplasmic reticulum (ER) stress associated factors.
RESULTS
Psoralen inhibited osteosarcoma cell viability (IC₅₀ 25 μg/mL for MG-63 cells and IC₅₀ 40 μg/mL for U2OS cells) in a dose-dependent manner and growth inhibition rate reached the highest level when cells were treated with 70 μg/mL psoralen. Psoralen induced cell cycle arrest in the G0/G1 phase and promoted apoptosis of both MG-63 and U2OS cells. The treatment of psoralen resulted in an increase in ATF-6 and CHOP protein levels as well as a decrease in Bcl-2 protein level, indicating that cell apoptosis induced by psoralen was associated with ER stress. Treatment with 4-PBA, the ER stress inhibitor, attenuated the ability of psoralen to promote apoptosis of MG-63 and U2OS cells.
CONCLUSIONS
Psoralen showed growth-inhibitory effects in osteosarcoma cells, and induced apoptosis via the ER stress pathway, which might be a potential drug to suppress the development of osteosarcoma.
期刊介绍:
"Folia Histochemica et Cytobiologica" is an international, English-language journal publishing articles in the areas of histochemistry, cytochemistry and cell & tissue biology.
"Folia Histochemica et Cytobiologica" was established in 1963 under the title: ‘Folia Histochemica et Cytochemica’ by the Polish Histochemical and Cytochemical Society as a journal devoted to the rapidly developing fields of histochemistry and cytochemistry. In 1984, the profile of the journal was broadened to accommodate papers dealing with cell and tissue biology, and the title was accordingly changed to "Folia Histochemica et Cytobiologica".
"Folia Histochemica et Cytobiologica" is published quarterly, one volume a year, by the Polish Histochemical and Cytochemical Society.