幂级数分布卷积的泊松近似

Pub Date : 2020-06-25 DOI:10.37190/0208-4147.00056
Amit Kumar, P. Vellaisamy, F. Viens
{"title":"幂级数分布卷积的泊松近似","authors":"Amit Kumar, P. Vellaisamy, F. Viens","doi":"10.37190/0208-4147.00056","DOIUrl":null,"url":null,"abstract":"In this article, we obtain, for the total variance distance, the error bounds between Poisson and convolution of power series distributions via Stein's method. This provides a unified approach to many known discrete distributions. Several Poisson limit theorems follow as corollaries from our bounds. As applications, we compare the Poisson approximation results with the negative binomial approximation results, for the sums of Bernoulli, geometric, and logarithmic series random variables.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Poisson Approximation to the Convolution of Power Series Distributions\",\"authors\":\"Amit Kumar, P. Vellaisamy, F. Viens\",\"doi\":\"10.37190/0208-4147.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we obtain, for the total variance distance, the error bounds between Poisson and convolution of power series distributions via Stein's method. This provides a unified approach to many known discrete distributions. Several Poisson limit theorems follow as corollaries from our bounds. As applications, we compare the Poisson approximation results with the negative binomial approximation results, for the sums of Bernoulli, geometric, and logarithmic series random variables.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们用Stein方法得到了对于总方差距离,幂级数分布的泊松与卷积之间的误差界。这为许多已知的离散分布提供了统一的方法。几个泊松极限定理从我们的界限中推论出来。作为应用,我们比较了泊松近似结果与负二项式近似结果,对于伯努利、几何和对数序列随机变量的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Poisson Approximation to the Convolution of Power Series Distributions
In this article, we obtain, for the total variance distance, the error bounds between Poisson and convolution of power series distributions via Stein's method. This provides a unified approach to many known discrete distributions. Several Poisson limit theorems follow as corollaries from our bounds. As applications, we compare the Poisson approximation results with the negative binomial approximation results, for the sums of Bernoulli, geometric, and logarithmic series random variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1