基于连续数据的学生学习成绩主成分分析与支持向量机预测模型

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS TEM Journal-Technology Education Management Informatics Pub Date : 2023-05-29 DOI:10.18421/tem122-66
Mohammad Zahid Mohammad Sabri, Nazatul Aini Abd Majid, S. A. Hanawi, Nur Izzati Mohd Talib, Ariff Imran Anuar Yatim
{"title":"基于连续数据的学生学习成绩主成分分析与支持向量机预测模型","authors":"Mohammad Zahid Mohammad Sabri, Nazatul Aini Abd Majid, S. A. Hanawi, Nur Izzati Mohd Talib, Ariff Imran Anuar Yatim","doi":"10.18421/tem122-66","DOIUrl":null,"url":null,"abstract":"Predicting student performance in higher education based on students’ self-efficacy and learning behaviour data is challenging, because the data is changing with time. The potential of using continuous data which is collected weekly needs to be investigated to identify the effectiveness in making predictions of low-performing students. Therefore, this paper presents the analysis of continuous data using the Principal Component Analysis (PCA) and Support Vector Machine (SVM) for predicting student performance. Firstly, we proposed three patterns of the Principal Component (PC) scores to predict the trends of behaviour within a semester. Secondly, we present an analysis of using different combinations of time frames in predicting the performance using the SVM. The obtained results show that three behaviour patterns have been extracted from the Hotelling’s T² values calculated using the PC scores which were fluctuating, ascending, and descending. The use of different time frames using SVM shows different accuracy results in prediction. The use of continuous data indicates that certain data can be predicted at the early stage using multiple time frames.","PeriodicalId":45439,"journal":{"name":"TEM Journal-Technology Education Management Informatics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction Model based on Continuous Data for Student Performance using Principal Component Analysis and Support Vector Machine\",\"authors\":\"Mohammad Zahid Mohammad Sabri, Nazatul Aini Abd Majid, S. A. Hanawi, Nur Izzati Mohd Talib, Ariff Imran Anuar Yatim\",\"doi\":\"10.18421/tem122-66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting student performance in higher education based on students’ self-efficacy and learning behaviour data is challenging, because the data is changing with time. The potential of using continuous data which is collected weekly needs to be investigated to identify the effectiveness in making predictions of low-performing students. Therefore, this paper presents the analysis of continuous data using the Principal Component Analysis (PCA) and Support Vector Machine (SVM) for predicting student performance. Firstly, we proposed three patterns of the Principal Component (PC) scores to predict the trends of behaviour within a semester. Secondly, we present an analysis of using different combinations of time frames in predicting the performance using the SVM. The obtained results show that three behaviour patterns have been extracted from the Hotelling’s T² values calculated using the PC scores which were fluctuating, ascending, and descending. The use of different time frames using SVM shows different accuracy results in prediction. The use of continuous data indicates that certain data can be predicted at the early stage using multiple time frames.\",\"PeriodicalId\":45439,\"journal\":{\"name\":\"TEM Journal-Technology Education Management Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEM Journal-Technology Education Management Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18421/tem122-66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal-Technology Education Management Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem122-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

基于学生的自我效能感和学习行为数据预测学生在高等教育中的表现是具有挑战性的,因为这些数据会随着时间的推移而变化。需要调查使用每周收集的连续数据的潜力,以确定对表现不佳的学生进行预测的有效性。因此,本文提出了使用主成分分析(PCA)和支持向量机(SVM)对连续数据进行分析,以预测学生的表现。首先,我们提出了三种主成分(PC)得分模式来预测一个学期内的行为趋势。其次,我们分析了在使用SVM预测性能时使用不同时间帧组合的情况。所获得的结果表明,从使用PC评分计算的霍特林T²值中提取了三种行为模式,即波动、上升和下降。使用SVM的不同时间帧的使用在预测中显示出不同的准确性结果。连续数据的使用表明,某些数据可以在早期阶段使用多个时间帧进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction Model based on Continuous Data for Student Performance using Principal Component Analysis and Support Vector Machine
Predicting student performance in higher education based on students’ self-efficacy and learning behaviour data is challenging, because the data is changing with time. The potential of using continuous data which is collected weekly needs to be investigated to identify the effectiveness in making predictions of low-performing students. Therefore, this paper presents the analysis of continuous data using the Principal Component Analysis (PCA) and Support Vector Machine (SVM) for predicting student performance. Firstly, we proposed three patterns of the Principal Component (PC) scores to predict the trends of behaviour within a semester. Secondly, we present an analysis of using different combinations of time frames in predicting the performance using the SVM. The obtained results show that three behaviour patterns have been extracted from the Hotelling’s T² values calculated using the PC scores which were fluctuating, ascending, and descending. The use of different time frames using SVM shows different accuracy results in prediction. The use of continuous data indicates that certain data can be predicted at the early stage using multiple time frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEM Journal-Technology Education Management Informatics
TEM Journal-Technology Education Management Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
14.30%
发文量
176
审稿时长
8 weeks
期刊介绍: TEM JOURNAL - Technology, Education, Management, Informatics Is a an Open Access, Double-blind peer reviewed journal that publishes articles of interdisciplinary sciences: • Technology, • Computer and informatics sciences, • Education, • Management
期刊最新文献
Relationship Between Computational and Critical Thinking Towards Modelling Competency Among Pre-Service Mathematics Teachers Neural Networks Applicability for Design of Reinforced Concrete Sections for Bending A Modified Approach for Forecasting Relative Humidity in Indoor Premises The Impact of Chatbots on Customer Satisfaction: A Systematic Literature Review Managing Environmental Noise with Mobile Noise Barriers - a Case Study of a Dolomite Quarry in Slovakia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1