基于数据融合的入侵检测大数据分析

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information and Telecommunication Pub Date : 2023-05-24 DOI:10.1080/24751839.2023.2214976
F. Jemili
{"title":"基于数据融合的入侵检测大数据分析","authors":"F. Jemili","doi":"10.1080/24751839.2023.2214976","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Intrusion detection is seen as the most promising way for computer security. It is used to protect computer networks against different types of attacks. The major problem in the literature is the classification of data into two main classes: normal and intrusion. To solve this problem, several approaches have been proposed but the problem of false alarms is still present. To provide a solution to this problem, we have proposed a new intrusion detection approach based on data fusion. The main objective of this work is to suggest an approach of data fusion-based Big Data analytics to detect intrusions; It is to build one dataset which combines various datasets and contains all the attack types. This research consists in merging the heterogeneous datasets and removing redundancy information using Big Data analytics tools: Hadoop/MapReduce and Neo4j. In the next step, machine learning algorithms are implemented for learning. The first algorithm, called SSDM (Semantically Similar Data Miner), uses fuzzy logic to generate association rules between the different item sets. The second algorithm, called K2, is a score-based greedy search algorithm for learning Bayesian networks from data. Experimentation results prove that – in both cases – data fusion contributes to having very good results.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards data fusion-based big data analytics for intrusion detection\",\"authors\":\"F. Jemili\",\"doi\":\"10.1080/24751839.2023.2214976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n Intrusion detection is seen as the most promising way for computer security. It is used to protect computer networks against different types of attacks. The major problem in the literature is the classification of data into two main classes: normal and intrusion. To solve this problem, several approaches have been proposed but the problem of false alarms is still present. To provide a solution to this problem, we have proposed a new intrusion detection approach based on data fusion. The main objective of this work is to suggest an approach of data fusion-based Big Data analytics to detect intrusions; It is to build one dataset which combines various datasets and contains all the attack types. This research consists in merging the heterogeneous datasets and removing redundancy information using Big Data analytics tools: Hadoop/MapReduce and Neo4j. In the next step, machine learning algorithms are implemented for learning. The first algorithm, called SSDM (Semantically Similar Data Miner), uses fuzzy logic to generate association rules between the different item sets. The second algorithm, called K2, is a score-based greedy search algorithm for learning Bayesian networks from data. Experimentation results prove that – in both cases – data fusion contributes to having very good results.\",\"PeriodicalId\":32180,\"journal\":{\"name\":\"Journal of Information and Telecommunication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24751839.2023.2214976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2023.2214976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards data fusion-based big data analytics for intrusion detection
ABSTRACT Intrusion detection is seen as the most promising way for computer security. It is used to protect computer networks against different types of attacks. The major problem in the literature is the classification of data into two main classes: normal and intrusion. To solve this problem, several approaches have been proposed but the problem of false alarms is still present. To provide a solution to this problem, we have proposed a new intrusion detection approach based on data fusion. The main objective of this work is to suggest an approach of data fusion-based Big Data analytics to detect intrusions; It is to build one dataset which combines various datasets and contains all the attack types. This research consists in merging the heterogeneous datasets and removing redundancy information using Big Data analytics tools: Hadoop/MapReduce and Neo4j. In the next step, machine learning algorithms are implemented for learning. The first algorithm, called SSDM (Semantically Similar Data Miner), uses fuzzy logic to generate association rules between the different item sets. The second algorithm, called K2, is a score-based greedy search algorithm for learning Bayesian networks from data. Experimentation results prove that – in both cases – data fusion contributes to having very good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
期刊最新文献
Utilizing deep learning in chipless RFID tag detection: an investigation on high-precision mm-wave spatial tag estimation from 2D virtual imaging On the performance of outage probability in cognitive NOMA random networks with hardware impairments Relay-assisted communication over a fluctuating two-ray fading channel Modified Caesar Cipher and Card Deck Shuffle Rearrangement Algorithm for Image Encryption Application of data envelopment analysis to IT project evaluation, with special emphasis on the choice of inputs and outputs in the context of the organization in question
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1