基于神经网络的玻璃骨料混凝土抗压强度预测

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY Revista Iteckne Pub Date : 2022-06-13 DOI:10.15332/iteckne.v19i2.2769
C. Ngandu
{"title":"基于神经网络的玻璃骨料混凝土抗压强度预测","authors":"C. Ngandu","doi":"10.15332/iteckne.v19i2.2769","DOIUrl":null,"url":null,"abstract":"Production of concrete by use of conventional materials is unsustainable due to high demand. Henceforth, there is need to upscale the use of alternative materials, including those from waste streams, in concrete. This research aims at developing a suitable predictive model of concrete having partial or 100% glass aggregates. 50 datasets reviewed from 9 sources were adopted and artificial neural network (ANN) models were developed in GNU Octave. The trial models had 7 input variables and 1 output variable (compressive strength) and 1 hidden layer. The selected model, having 24 nodes in the hidden layer and 90.000 iterations, indicated overall root mean square error (RMSE), mean absolute errors (MAE), mean absolute percentage errors (MAPE) and absolute factor of variance (R2) of 2.679 MPa, 1.422 MPa, 6.951% and 0.996 respectively. The glass fine aggregates between >40% and 50% indicated just over 11% average strengths from the controls. Generally, RMSE, MAE, MAPE and R2 values showed that the selected model had a good accuracy level and good generalization, particularly considering that the datasets were not from the same experimental program. The study recommends research and utilization of glass fine aggregates up to 50% by weight, with consideration to other influencing factors and also research in cost-effective and environmentally friendly additive and assessment on waste glass aggregates incorporated concrete.","PeriodicalId":53892,"journal":{"name":"Revista Iteckne","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive strength prediction for glass aggregates incorporated concrete, using neural network and reviews\",\"authors\":\"C. Ngandu\",\"doi\":\"10.15332/iteckne.v19i2.2769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production of concrete by use of conventional materials is unsustainable due to high demand. Henceforth, there is need to upscale the use of alternative materials, including those from waste streams, in concrete. This research aims at developing a suitable predictive model of concrete having partial or 100% glass aggregates. 50 datasets reviewed from 9 sources were adopted and artificial neural network (ANN) models were developed in GNU Octave. The trial models had 7 input variables and 1 output variable (compressive strength) and 1 hidden layer. The selected model, having 24 nodes in the hidden layer and 90.000 iterations, indicated overall root mean square error (RMSE), mean absolute errors (MAE), mean absolute percentage errors (MAPE) and absolute factor of variance (R2) of 2.679 MPa, 1.422 MPa, 6.951% and 0.996 respectively. The glass fine aggregates between >40% and 50% indicated just over 11% average strengths from the controls. Generally, RMSE, MAE, MAPE and R2 values showed that the selected model had a good accuracy level and good generalization, particularly considering that the datasets were not from the same experimental program. The study recommends research and utilization of glass fine aggregates up to 50% by weight, with consideration to other influencing factors and also research in cost-effective and environmentally friendly additive and assessment on waste glass aggregates incorporated concrete.\",\"PeriodicalId\":53892,\"journal\":{\"name\":\"Revista Iteckne\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Iteckne\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15332/iteckne.v19i2.2769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Iteckne","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15332/iteckne.v19i2.2769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于需求量大,使用传统材料生产混凝土是不可持续的。因此,需要在混凝土中大量使用替代材料,包括那些来自废物流的材料。本研究的目的是开发一个合适的预测模型混凝土具有部分或100%的玻璃骨料。采用了来自9个来源的50个数据集,并在GNU Octave中开发了人工神经网络(ANN)模型。试验模型有7个输入变量和1个输出变量(抗压强度),1个隐藏层。所选模型隐含层节点数为24个,迭代次数为90.000次,总体均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和绝对方差因子(R2)分别为2.679 MPa、1.422 MPa、6.951%和0.996。玻璃细骨料的强度在40%和50%之间,比对照组的平均强度略高于11%。一般来说,RMSE、MAE、MAPE和R2值表明所选模型具有较好的精度水平和较好的泛化,特别是考虑到数据集不是来自同一实验程序。研究建议在考虑其他影响因素的情况下,研究和利用重量比达到50%的玻璃细骨料,并研究具有成本效益和环保型的添加剂,并对废玻璃骨料掺入混凝土进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressive strength prediction for glass aggregates incorporated concrete, using neural network and reviews
Production of concrete by use of conventional materials is unsustainable due to high demand. Henceforth, there is need to upscale the use of alternative materials, including those from waste streams, in concrete. This research aims at developing a suitable predictive model of concrete having partial or 100% glass aggregates. 50 datasets reviewed from 9 sources were adopted and artificial neural network (ANN) models were developed in GNU Octave. The trial models had 7 input variables and 1 output variable (compressive strength) and 1 hidden layer. The selected model, having 24 nodes in the hidden layer and 90.000 iterations, indicated overall root mean square error (RMSE), mean absolute errors (MAE), mean absolute percentage errors (MAPE) and absolute factor of variance (R2) of 2.679 MPa, 1.422 MPa, 6.951% and 0.996 respectively. The glass fine aggregates between >40% and 50% indicated just over 11% average strengths from the controls. Generally, RMSE, MAE, MAPE and R2 values showed that the selected model had a good accuracy level and good generalization, particularly considering that the datasets were not from the same experimental program. The study recommends research and utilization of glass fine aggregates up to 50% by weight, with consideration to other influencing factors and also research in cost-effective and environmentally friendly additive and assessment on waste glass aggregates incorporated concrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Iteckne
Revista Iteckne ENGINEERING, MULTIDISCIPLINARY-
自引率
50.00%
发文量
3
审稿时长
24 weeks
期刊最新文献
Predicting the strength of seashell concrete using Adaptive Neuro-Fuzzy Inference System: An experimental study Influencia de las cenizas de cascarilla de arroz como reemplazo parcial del cemento utilizado para la elaboración del concreto: una revisión de literatura Towards the Automation of Data Networks Evaluación de un pavimento flexible aplicando el método Pavement Condition Index - PCI Desempeño mecánico del concreto convencional reemplazando agregado grueso con polietileno de tereftalato
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1