S. Svirskas, T. Kudrevičius, E. Birks, M. Dunce, A. Sternbergs, C. Huang, J. Banys
{"title":"铌酸钠改性0.8Na0.5Bi0.5TiO3-0.2BaTiO3的介电和压电性能","authors":"S. Svirskas, T. Kudrevičius, E. Birks, M. Dunce, A. Sternbergs, C. Huang, J. Banys","doi":"10.3952/physics.v62i4.4816","DOIUrl":null,"url":null,"abstract":"In this paper, we present the dielectric and piezoelectric properties of tetragonal 0.8Na0.5Bi0.5TiO3-0.2BaTiO3 modified with NaNbO3 ((1-x)[0.8Na0.5Bi0.5TiO3-0.2BaTiO3]-xNaNbO3). Our experimental study has revealed that the ferroelectric phase in these compositions is suppressed with the increase of sodium niobate concentration. A broad anomaly, resembling relaxor ferroelectrics, appears in the 325–450 K temperature interval. The investigation of the electric field dependence of polarization has indicated that the double hysteresis loop behaviour is characteristic of the modified compositions, which is associated with the 1st order phase transition under the applied electric field. The experiments below room temperature have revealed that the range of stability of the ferroelectric phase is shifted to lower temperatures upon the increase of sodium niobate concentration. The electromechanical displacement in the modified compositions shows a similar maximum displacement in the whole concentration range. The electromechanical response in 0.8Na0.5B0.5TiO3-0.2BaTiO3 solid solutions is due to the piezoelectric effect, while, in the mixed compositions, it is related to the jump-like change of the lattice constants in the vicinity of electric fieldinduced 1st order phase transition.","PeriodicalId":18144,"journal":{"name":"Lithuanian Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric and piezoelectric properties of 0.8Na0.5Bi0.5TiO3-0.2BaTiO3 modified with sodium niobate\",\"authors\":\"S. Svirskas, T. Kudrevičius, E. Birks, M. Dunce, A. Sternbergs, C. Huang, J. Banys\",\"doi\":\"10.3952/physics.v62i4.4816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the dielectric and piezoelectric properties of tetragonal 0.8Na0.5Bi0.5TiO3-0.2BaTiO3 modified with NaNbO3 ((1-x)[0.8Na0.5Bi0.5TiO3-0.2BaTiO3]-xNaNbO3). Our experimental study has revealed that the ferroelectric phase in these compositions is suppressed with the increase of sodium niobate concentration. A broad anomaly, resembling relaxor ferroelectrics, appears in the 325–450 K temperature interval. The investigation of the electric field dependence of polarization has indicated that the double hysteresis loop behaviour is characteristic of the modified compositions, which is associated with the 1st order phase transition under the applied electric field. The experiments below room temperature have revealed that the range of stability of the ferroelectric phase is shifted to lower temperatures upon the increase of sodium niobate concentration. The electromechanical displacement in the modified compositions shows a similar maximum displacement in the whole concentration range. The electromechanical response in 0.8Na0.5B0.5TiO3-0.2BaTiO3 solid solutions is due to the piezoelectric effect, while, in the mixed compositions, it is related to the jump-like change of the lattice constants in the vicinity of electric fieldinduced 1st order phase transition.\",\"PeriodicalId\":18144,\"journal\":{\"name\":\"Lithuanian Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithuanian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3952/physics.v62i4.4816\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3952/physics.v62i4.4816","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Dielectric and piezoelectric properties of 0.8Na0.5Bi0.5TiO3-0.2BaTiO3 modified with sodium niobate
In this paper, we present the dielectric and piezoelectric properties of tetragonal 0.8Na0.5Bi0.5TiO3-0.2BaTiO3 modified with NaNbO3 ((1-x)[0.8Na0.5Bi0.5TiO3-0.2BaTiO3]-xNaNbO3). Our experimental study has revealed that the ferroelectric phase in these compositions is suppressed with the increase of sodium niobate concentration. A broad anomaly, resembling relaxor ferroelectrics, appears in the 325–450 K temperature interval. The investigation of the electric field dependence of polarization has indicated that the double hysteresis loop behaviour is characteristic of the modified compositions, which is associated with the 1st order phase transition under the applied electric field. The experiments below room temperature have revealed that the range of stability of the ferroelectric phase is shifted to lower temperatures upon the increase of sodium niobate concentration. The electromechanical displacement in the modified compositions shows a similar maximum displacement in the whole concentration range. The electromechanical response in 0.8Na0.5B0.5TiO3-0.2BaTiO3 solid solutions is due to the piezoelectric effect, while, in the mixed compositions, it is related to the jump-like change of the lattice constants in the vicinity of electric fieldinduced 1st order phase transition.
期刊介绍:
The main aim of the Lithuanian Journal of Physics is to reflect the most recent advances in various fields of theoretical, experimental, and applied physics, including: mathematical and computational physics; subatomic physics; atoms and molecules; chemical physics; electrodynamics and wave processes; nonlinear and coherent optics; spectroscopy.