复电阻率测量在韩国某浅成热液型金银矿床中的应用

IF 0.6 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Exploration Geophysics Pub Date : 2022-09-08 DOI:10.1080/08123985.2022.2091986
J. Son, Seok-Jun Yang, S. Shin, Samgyu Park
{"title":"复电阻率测量在韩国某浅成热液型金银矿床中的应用","authors":"J. Son, Seok-Jun Yang, S. Shin, Samgyu Park","doi":"10.1080/08123985.2022.2091986","DOIUrl":null,"url":null,"abstract":"Electrochemical reactions at the interface between groundwater and sulphides are remarkable. Sulphides in mineralised zones are relatively abundant compared to hydrothermal alteration zones and host rocks. Complex resistivity is a geophysical tool for visualising difference between various subsurface electrochemical reactions. The epithermal Au–Ag mineralisation at Moisan hill (South Korea) occurs in the extensively disseminated pyrite zone, a typical feature of advanced argillic and argillic alteration zones. The epithermal vein at Moisan had a strike length of >500 m horizontally and approximately 300 m vertically and was controlled by the WNW fault zone. In this context, the deposit was subjected to a test bed to demonstrate the applicability of the complex resistivity survey for mineral exploration. To compare complex resistivity results with geological characteristics of epithermal mineralisation, we visualised the complex resistivity survey results and Au–Ag mineralised zones confirmed by drilling cores in three dimensions. The quartz veins of the targets showed high resistivity and a strong phase response; however, both the alteration zones and host rocks showed lower resistivity and a weaker phase response than the target zones. Through a step-by-step clustering analysis, a simple map integrating both kinds of the geophysical models was generated, to identify the boundary between the target and background. Geologic survey and drilling investigations indicate that the target is well-localised in a mineralised zone. The complex resistivity survey is a useful tool for exploring epithermal Au–Ag deposits.","PeriodicalId":50460,"journal":{"name":"Exploration Geophysics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of complex resistivity survey in an epithermal Au-Ag deposit, South Korea\",\"authors\":\"J. Son, Seok-Jun Yang, S. Shin, Samgyu Park\",\"doi\":\"10.1080/08123985.2022.2091986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical reactions at the interface between groundwater and sulphides are remarkable. Sulphides in mineralised zones are relatively abundant compared to hydrothermal alteration zones and host rocks. Complex resistivity is a geophysical tool for visualising difference between various subsurface electrochemical reactions. The epithermal Au–Ag mineralisation at Moisan hill (South Korea) occurs in the extensively disseminated pyrite zone, a typical feature of advanced argillic and argillic alteration zones. The epithermal vein at Moisan had a strike length of >500 m horizontally and approximately 300 m vertically and was controlled by the WNW fault zone. In this context, the deposit was subjected to a test bed to demonstrate the applicability of the complex resistivity survey for mineral exploration. To compare complex resistivity results with geological characteristics of epithermal mineralisation, we visualised the complex resistivity survey results and Au–Ag mineralised zones confirmed by drilling cores in three dimensions. The quartz veins of the targets showed high resistivity and a strong phase response; however, both the alteration zones and host rocks showed lower resistivity and a weaker phase response than the target zones. Through a step-by-step clustering analysis, a simple map integrating both kinds of the geophysical models was generated, to identify the boundary between the target and background. Geologic survey and drilling investigations indicate that the target is well-localised in a mineralised zone. The complex resistivity survey is a useful tool for exploring epithermal Au–Ag deposits.\",\"PeriodicalId\":50460,\"journal\":{\"name\":\"Exploration Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/08123985.2022.2091986\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2022.2091986","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地下水和硫化物界面的电化学反应非常显著。与热液蚀变带和寄主岩石相比,矿化带中的硫化物相对丰富。复电阻率是一种用于可视化各种地下电化学反应之间差异的地球物理工具。Moisan山(韩国)的浅成热液Au–Ag矿化发生在广泛分布的黄铁矿带中,这是高级泥化和泥化蚀变带的典型特征。Moisan的浅成热液矿脉水平走向长度大于500 m,垂直走向长度约为300 m,受WNW断层带控制。在这种情况下,对矿床进行了试验台测试,以证明复电阻率测量在矿产勘探中的适用性。为了将复电阻率结果与超热液矿化的地质特征进行比较,我们在三维中可视化了复电阻调查结果和钻孔岩芯确认的Au–Ag矿化带。靶的石英脉表现出高电阻率和强相位响应;然而,蚀变带和寄主岩石都表现出比靶区更低的电阻率和较弱的相位响应。通过逐步聚类分析,生成了一张综合了两种地球物理模型的简单地图,以识别目标和背景之间的边界。地质调查和钻探调查表明,目标位于矿化带。复电阻率测量是探测浅成低温热液Au–Ag矿床的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of complex resistivity survey in an epithermal Au-Ag deposit, South Korea
Electrochemical reactions at the interface between groundwater and sulphides are remarkable. Sulphides in mineralised zones are relatively abundant compared to hydrothermal alteration zones and host rocks. Complex resistivity is a geophysical tool for visualising difference between various subsurface electrochemical reactions. The epithermal Au–Ag mineralisation at Moisan hill (South Korea) occurs in the extensively disseminated pyrite zone, a typical feature of advanced argillic and argillic alteration zones. The epithermal vein at Moisan had a strike length of >500 m horizontally and approximately 300 m vertically and was controlled by the WNW fault zone. In this context, the deposit was subjected to a test bed to demonstrate the applicability of the complex resistivity survey for mineral exploration. To compare complex resistivity results with geological characteristics of epithermal mineralisation, we visualised the complex resistivity survey results and Au–Ag mineralised zones confirmed by drilling cores in three dimensions. The quartz veins of the targets showed high resistivity and a strong phase response; however, both the alteration zones and host rocks showed lower resistivity and a weaker phase response than the target zones. Through a step-by-step clustering analysis, a simple map integrating both kinds of the geophysical models was generated, to identify the boundary between the target and background. Geologic survey and drilling investigations indicate that the target is well-localised in a mineralised zone. The complex resistivity survey is a useful tool for exploring epithermal Au–Ag deposits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Exploration Geophysics
Exploration Geophysics 地学-地球化学与地球物理
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Exploration Geophysics is published on behalf of the Australian Society of Exploration Geophysicists (ASEG), Society of Exploration Geophysics of Japan (SEGJ), and Korean Society of Earth and Exploration Geophysicists (KSEG). The journal presents significant case histories, advances in data interpretation, and theoretical developments resulting from original research in exploration and applied geophysics. Papers that may have implications for field practice in Australia, even if they report work from other continents, will be welcome. ´Exploration and applied geophysics´ will be interpreted broadly by the editors, so that geotechnical and environmental studies are by no means precluded. Papers are expected to be of a high standard. Exploration Geophysics uses an international pool of reviewers drawn from industry and academic authorities as selected by the editorial panel. The journal provides a common meeting ground for geophysicists active in either field studies or basic research.
期刊最新文献
Fuzzy c-mean (FCM) integration of geophysical data from an iron-oxide copper gold (IOCG) deposit under thick cover A rapid imaging approach for transient electromagnetic data based on gradient features Improving the accuracy of density logging results considering mineral composition for evaluation of high-level radioactive waste disposal sites Advances in forward modelling and inversion of geophysical electromagnetic data 3-D spatial distribution of concealed ore-forming granitoid intrusion and structures determined by the CSAMT survey of Wuxu Sb-Zn-polymetallic ore district, South China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1