基于波动指数预测美国股市走向的机器学习方法的比较

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-08-04 DOI:10.1016/j.ijforecast.2023.07.002
Giovanni Campisi , Silvia Muzzioli , Bernard De Baets
{"title":"基于波动指数预测美国股市走向的机器学习方法的比较","authors":"Giovanni Campisi ,&nbsp;Silvia Muzzioli ,&nbsp;Bernard De Baets","doi":"10.1016/j.ijforecast.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the information content of volatility indices for the purpose of predicting the future direction of the stock market. To this end, different machine learning methods are applied. The dataset used consists of stock index returns and volatility indices of the US stock market from January 2011 until July 2022. The predictive performance of the resulting models is evaluated on the basis of three evaluation metrics: accuracy, the area under the ROC curve, and the F-measure. The results indicate that machine learning models outperform the classical least squares linear regression model in predicting the direction of S&amp;P 500 returns. Among the models examined, random forests and bagging attain the highest predictive performance based on all the evaluation metrics adopted.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023000729/pdfft?md5=822c1c5787a6a3aad911a81d8b5d7bfd&pid=1-s2.0-S0169207023000729-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A comparison of machine learning methods for predicting the direction of the US stock market on the basis of volatility indices\",\"authors\":\"Giovanni Campisi ,&nbsp;Silvia Muzzioli ,&nbsp;Bernard De Baets\",\"doi\":\"10.1016/j.ijforecast.2023.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the information content of volatility indices for the purpose of predicting the future direction of the stock market. To this end, different machine learning methods are applied. The dataset used consists of stock index returns and volatility indices of the US stock market from January 2011 until July 2022. The predictive performance of the resulting models is evaluated on the basis of three evaluation metrics: accuracy, the area under the ROC curve, and the F-measure. The results indicate that machine learning models outperform the classical least squares linear regression model in predicting the direction of S&amp;P 500 returns. Among the models examined, random forests and bagging attain the highest predictive performance based on all the evaluation metrics adopted.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169207023000729/pdfft?md5=822c1c5787a6a3aad911a81d8b5d7bfd&pid=1-s2.0-S0169207023000729-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207023000729\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023000729","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文以预测股市未来走向为目的,研究了波动指数的信息含量。为此,本文采用了不同的机器学习方法。所使用的数据集包括 2011 年 1 月至 2022 年 7 月期间美国股市的股指收益率和波动率指数。根据准确率、ROC 曲线下面积和 F 测量这三个评价指标,对所生成模型的预测性能进行了评估。结果表明,在预测 S&P 500 指数回报方向方面,机器学习模型优于经典的最小二乘法线性回归模型。根据所采用的所有评价指标,在所研究的模型中,随机森林和套袋法的预测性能最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison of machine learning methods for predicting the direction of the US stock market on the basis of volatility indices

This paper investigates the information content of volatility indices for the purpose of predicting the future direction of the stock market. To this end, different machine learning methods are applied. The dataset used consists of stock index returns and volatility indices of the US stock market from January 2011 until July 2022. The predictive performance of the resulting models is evaluated on the basis of three evaluation metrics: accuracy, the area under the ROC curve, and the F-measure. The results indicate that machine learning models outperform the classical least squares linear regression model in predicting the direction of S&P 500 returns. Among the models examined, random forests and bagging attain the highest predictive performance based on all the evaluation metrics adopted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
On memory-augmented gated recurrent unit network Editorial Board A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching Editorial Board Forecasting interest rates with shifting endpoints: The role of the functional demographic age distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1