Lishuai Guo, Jia Luo, Xiaolu Zhu, Jianfeng Li, Sheng Tuo
{"title":"δ掺杂对有限周期磁垒纳米结构电子输运的影响","authors":"Lishuai Guo, Jia Luo, Xiaolu Zhu, Jianfeng Li, Sheng Tuo","doi":"10.1142/s0217984923502652","DOIUrl":null,"url":null,"abstract":"Periodic nanostructure is a novel method to manipulate the electronic properties in electronics. An efficient method in this paper is proposed to judge whether m identical periods’ magnetic nanostructure is a periodic structure by judging whether its physical structure and its magnetic vector potential structure both keep periodic. By investigating the influence of the [Formula: see text]-doping potential on the electron transport properties with m identical periods’ magnetic barrier nanostructure of InAs system, it shows that, firstly, the resonant peak of transmission probability, conductance, and spin polarization has been induced by splitting into (2[Formula: see text]) folds with m units nanostructure, respectively, especially when the resonant peak of transmission probability is almost close to 1 as the incident energy is lower; secondly, the height of [Formula: see text]-doping potential has an extensive influence on the resonant peak of transmission probability, which the resonant peak will be more dependent of the height of [Formula: see text]-doping potential increasing. Meanwhile, the conductance will be decreased with the height of [Formula: see text]-doping potential increasing.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of the δ-doping on the electron transport with the finite periodic magnetic barriers nanostructure\",\"authors\":\"Lishuai Guo, Jia Luo, Xiaolu Zhu, Jianfeng Li, Sheng Tuo\",\"doi\":\"10.1142/s0217984923502652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic nanostructure is a novel method to manipulate the electronic properties in electronics. An efficient method in this paper is proposed to judge whether m identical periods’ magnetic nanostructure is a periodic structure by judging whether its physical structure and its magnetic vector potential structure both keep periodic. By investigating the influence of the [Formula: see text]-doping potential on the electron transport properties with m identical periods’ magnetic barrier nanostructure of InAs system, it shows that, firstly, the resonant peak of transmission probability, conductance, and spin polarization has been induced by splitting into (2[Formula: see text]) folds with m units nanostructure, respectively, especially when the resonant peak of transmission probability is almost close to 1 as the incident energy is lower; secondly, the height of [Formula: see text]-doping potential has an extensive influence on the resonant peak of transmission probability, which the resonant peak will be more dependent of the height of [Formula: see text]-doping potential increasing. Meanwhile, the conductance will be decreased with the height of [Formula: see text]-doping potential increasing.\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984923502652\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984923502652","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
The influence of the δ-doping on the electron transport with the finite periodic magnetic barriers nanostructure
Periodic nanostructure is a novel method to manipulate the electronic properties in electronics. An efficient method in this paper is proposed to judge whether m identical periods’ magnetic nanostructure is a periodic structure by judging whether its physical structure and its magnetic vector potential structure both keep periodic. By investigating the influence of the [Formula: see text]-doping potential on the electron transport properties with m identical periods’ magnetic barrier nanostructure of InAs system, it shows that, firstly, the resonant peak of transmission probability, conductance, and spin polarization has been induced by splitting into (2[Formula: see text]) folds with m units nanostructure, respectively, especially when the resonant peak of transmission probability is almost close to 1 as the incident energy is lower; secondly, the height of [Formula: see text]-doping potential has an extensive influence on the resonant peak of transmission probability, which the resonant peak will be more dependent of the height of [Formula: see text]-doping potential increasing. Meanwhile, the conductance will be decreased with the height of [Formula: see text]-doping potential increasing.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.