δ掺杂对有限周期磁垒纳米结构电子输运的影响

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED Modern Physics Letters B Pub Date : 2023-08-31 DOI:10.1142/s0217984923502652
Lishuai Guo, Jia Luo, Xiaolu Zhu, Jianfeng Li, Sheng Tuo
{"title":"δ掺杂对有限周期磁垒纳米结构电子输运的影响","authors":"Lishuai Guo, Jia Luo, Xiaolu Zhu, Jianfeng Li, Sheng Tuo","doi":"10.1142/s0217984923502652","DOIUrl":null,"url":null,"abstract":"Periodic nanostructure is a novel method to manipulate the electronic properties in electronics. An efficient method in this paper is proposed to judge whether m identical periods’ magnetic nanostructure is a periodic structure by judging whether its physical structure and its magnetic vector potential structure both keep periodic. By investigating the influence of the [Formula: see text]-doping potential on the electron transport properties with m identical periods’ magnetic barrier nanostructure of InAs system, it shows that, firstly, the resonant peak of transmission probability, conductance, and spin polarization has been induced by splitting into (2[Formula: see text]) folds with m units nanostructure, respectively, especially when the resonant peak of transmission probability is almost close to 1 as the incident energy is lower; secondly, the height of [Formula: see text]-doping potential has an extensive influence on the resonant peak of transmission probability, which the resonant peak will be more dependent of the height of [Formula: see text]-doping potential increasing. Meanwhile, the conductance will be decreased with the height of [Formula: see text]-doping potential increasing.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of the δ-doping on the electron transport with the finite periodic magnetic barriers nanostructure\",\"authors\":\"Lishuai Guo, Jia Luo, Xiaolu Zhu, Jianfeng Li, Sheng Tuo\",\"doi\":\"10.1142/s0217984923502652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic nanostructure is a novel method to manipulate the electronic properties in electronics. An efficient method in this paper is proposed to judge whether m identical periods’ magnetic nanostructure is a periodic structure by judging whether its physical structure and its magnetic vector potential structure both keep periodic. By investigating the influence of the [Formula: see text]-doping potential on the electron transport properties with m identical periods’ magnetic barrier nanostructure of InAs system, it shows that, firstly, the resonant peak of transmission probability, conductance, and spin polarization has been induced by splitting into (2[Formula: see text]) folds with m units nanostructure, respectively, especially when the resonant peak of transmission probability is almost close to 1 as the incident energy is lower; secondly, the height of [Formula: see text]-doping potential has an extensive influence on the resonant peak of transmission probability, which the resonant peak will be more dependent of the height of [Formula: see text]-doping potential increasing. Meanwhile, the conductance will be decreased with the height of [Formula: see text]-doping potential increasing.\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984923502652\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984923502652","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

周期性纳米结构是一种在电子学中操纵电子性质的新方法。本文提出了一种通过判断m个相同周期的磁性纳米结构的物理结构和磁矢势结构是否都保持周期性来判断其是否为周期性结构的有效方法。通过研究[公式:见正文]掺杂电势对InAs系统的m个相同周期的磁势垒纳米结构的电子传输特性的影响,表明:首先,传输概率、电导和自旋极化的共振峰是通过分别与m个单元的纳米结构分裂成(2[公式:参见正文])个折叠而产生的,尤其是当入射能量越低,传输概率的谐振峰值几乎接近1时;其次,[公式:见正文]掺杂电势的高度对谐振峰的传输概率有广泛的影响,其中谐振峰将更多地依赖于[公式:参见正文]掺杂电位的高度的增加。同时,随着[公式:见正文]掺杂电势的增加,电导会降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The influence of the δ-doping on the electron transport with the finite periodic magnetic barriers nanostructure
Periodic nanostructure is a novel method to manipulate the electronic properties in electronics. An efficient method in this paper is proposed to judge whether m identical periods’ magnetic nanostructure is a periodic structure by judging whether its physical structure and its magnetic vector potential structure both keep periodic. By investigating the influence of the [Formula: see text]-doping potential on the electron transport properties with m identical periods’ magnetic barrier nanostructure of InAs system, it shows that, firstly, the resonant peak of transmission probability, conductance, and spin polarization has been induced by splitting into (2[Formula: see text]) folds with m units nanostructure, respectively, especially when the resonant peak of transmission probability is almost close to 1 as the incident energy is lower; secondly, the height of [Formula: see text]-doping potential has an extensive influence on the resonant peak of transmission probability, which the resonant peak will be more dependent of the height of [Formula: see text]-doping potential increasing. Meanwhile, the conductance will be decreased with the height of [Formula: see text]-doping potential increasing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
期刊最新文献
Investigation of Sn-doped WO3 thin films: One-step deposition by hydrothermal technique, characterization, and photoluminescence study Flow and heat transfer of nanofluids in a cylindrical permeable wavy channel embedded in porous medium using Buongiorno’s model NaYF4:Yb3+/Ho3+ up-conversion luminescence and its low temperature sensing characteristics Using the bond valence sum model to calculate Li-diffusion pathways in Silicene with MgX2 (X=Cl, Br, I) substrates First-principles study of the electronic and optical properties of Nb-doped MoSe2 by tensile strain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1