{"title":"2019冠状病毒病的文化和行为空间关联模式","authors":"","doi":"10.52939/ijg.v19i4.2637","DOIUrl":null,"url":null,"abstract":"This study was a cross-sectional study. The study of spatial association patterns and the influences on the Coronavirus Disease 2019 (COVID-19) epidemic situation in Thailand was performed using secondary data from the COVID-19 interactive dashboard, Department of Disease Control, Ministry of Public Health, between January 1st, 2020, and December 31st, 2021. Moran’s I, Local Indicators of Spatial Association (LISA), and Spatial Regression was applied for statistical analysis. In the epidemic situation of COVID-19, the highest of 11,512.65 per one hundred thousand population, and the spatial association between the nighttime light average, the prevalence of smokers in Thailand, the proportion of population per village health volunteer, and the proportion of population per health care center with the epidemic situation of COVID-19 has Moran’s I = 0.309, 0.396, 0.081 and 0.424, respectively. From the Spatial Lag Model (SLM), a factor that has a spatial association with the epidemic situation of COVID-19 is the nighttime light average, the prevalence of smokers in Thailand, and the proportion of population per healthcare center, which can predict the epidemic situation of COVID-19 by 47.8 percent (R2 =0.478). The growth factor of a large city is an important factor for population density which is a major cause of spread of the coronavirus easily. Moreover, smoking behavior has encouraged the epidemic to spread rapidly. The situation is serious as the number of hospitals is not enough to support the treatment and screening of patients to cover the entire population of Thailand. Therefore, it is urgent that the government plan to mitigate the situation with maximum efficiency by having Covid-19 centers and increase the number of beds and facilities.","PeriodicalId":38707,"journal":{"name":"International Journal of Geoinformatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Association Patterns with Cultural and Behaviour with the Situations of COVID-19\",\"authors\":\"\",\"doi\":\"10.52939/ijg.v19i4.2637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was a cross-sectional study. The study of spatial association patterns and the influences on the Coronavirus Disease 2019 (COVID-19) epidemic situation in Thailand was performed using secondary data from the COVID-19 interactive dashboard, Department of Disease Control, Ministry of Public Health, between January 1st, 2020, and December 31st, 2021. Moran’s I, Local Indicators of Spatial Association (LISA), and Spatial Regression was applied for statistical analysis. In the epidemic situation of COVID-19, the highest of 11,512.65 per one hundred thousand population, and the spatial association between the nighttime light average, the prevalence of smokers in Thailand, the proportion of population per village health volunteer, and the proportion of population per health care center with the epidemic situation of COVID-19 has Moran’s I = 0.309, 0.396, 0.081 and 0.424, respectively. From the Spatial Lag Model (SLM), a factor that has a spatial association with the epidemic situation of COVID-19 is the nighttime light average, the prevalence of smokers in Thailand, and the proportion of population per healthcare center, which can predict the epidemic situation of COVID-19 by 47.8 percent (R2 =0.478). The growth factor of a large city is an important factor for population density which is a major cause of spread of the coronavirus easily. Moreover, smoking behavior has encouraged the epidemic to spread rapidly. The situation is serious as the number of hospitals is not enough to support the treatment and screening of patients to cover the entire population of Thailand. Therefore, it is urgent that the government plan to mitigate the situation with maximum efficiency by having Covid-19 centers and increase the number of beds and facilities.\",\"PeriodicalId\":38707,\"journal\":{\"name\":\"International Journal of Geoinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52939/ijg.v19i4.2637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52939/ijg.v19i4.2637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
Spatial Association Patterns with Cultural and Behaviour with the Situations of COVID-19
This study was a cross-sectional study. The study of spatial association patterns and the influences on the Coronavirus Disease 2019 (COVID-19) epidemic situation in Thailand was performed using secondary data from the COVID-19 interactive dashboard, Department of Disease Control, Ministry of Public Health, between January 1st, 2020, and December 31st, 2021. Moran’s I, Local Indicators of Spatial Association (LISA), and Spatial Regression was applied for statistical analysis. In the epidemic situation of COVID-19, the highest of 11,512.65 per one hundred thousand population, and the spatial association between the nighttime light average, the prevalence of smokers in Thailand, the proportion of population per village health volunteer, and the proportion of population per health care center with the epidemic situation of COVID-19 has Moran’s I = 0.309, 0.396, 0.081 and 0.424, respectively. From the Spatial Lag Model (SLM), a factor that has a spatial association with the epidemic situation of COVID-19 is the nighttime light average, the prevalence of smokers in Thailand, and the proportion of population per healthcare center, which can predict the epidemic situation of COVID-19 by 47.8 percent (R2 =0.478). The growth factor of a large city is an important factor for population density which is a major cause of spread of the coronavirus easily. Moreover, smoking behavior has encouraged the epidemic to spread rapidly. The situation is serious as the number of hospitals is not enough to support the treatment and screening of patients to cover the entire population of Thailand. Therefore, it is urgent that the government plan to mitigate the situation with maximum efficiency by having Covid-19 centers and increase the number of beds and facilities.