椭圆轨道陀螺三阶和四阶共振旋转稳定性分析

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED Regular and Chaotic Dynamics Pub Date : 2023-04-07 DOI:10.1134/S156035472302003X
Xue Zhong, Jie Zhao, Kaiping Yu, Minqiang Xu
{"title":"椭圆轨道陀螺三阶和四阶共振旋转稳定性分析","authors":"Xue Zhong,&nbsp;Jie Zhao,&nbsp;Kaiping Yu,&nbsp;Minqiang Xu","doi":"10.1134/S156035472302003X","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the stability of resonant rotation of a symmetric gyrostat under third- and fourth-order resonances, whose center of mass moves in an elliptic orbit in a central Newtonian gravitational field. The resonant rotation is a special planar periodic motion of the gyrostat about its center of mass, i. e., the body performs one rotation in absolute space during two orbital revolutions of its center of mass. The equations of motion of\nthe gyrostat are derived as a periodic Hamiltonian system with three degrees of freedom and a constructive algorithm based on a symplectic map is used to calculate the coefficients of the normalized Hamiltonian. By analyzing the Floquet multipliers of the linearized equations of perturbed motion, the unstable region of the resonant rotation and the region of stability in the first-order approximation are determined in the dimensionless parameter plane. In addition, the third- and fourth-order resonances are obtained in the linear stability region and further nonlinear stability analysis is performed in the third- and fourth-order resonant cases.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 2","pages":"162 - 190"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Resonant Rotation of a Gyrostat in an Elliptic Orbit Under Third-and Fourth-Order Resonances\",\"authors\":\"Xue Zhong,&nbsp;Jie Zhao,&nbsp;Kaiping Yu,&nbsp;Minqiang Xu\",\"doi\":\"10.1134/S156035472302003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the stability of resonant rotation of a symmetric gyrostat under third- and fourth-order resonances, whose center of mass moves in an elliptic orbit in a central Newtonian gravitational field. The resonant rotation is a special planar periodic motion of the gyrostat about its center of mass, i. e., the body performs one rotation in absolute space during two orbital revolutions of its center of mass. The equations of motion of\\nthe gyrostat are derived as a periodic Hamiltonian system with three degrees of freedom and a constructive algorithm based on a symplectic map is used to calculate the coefficients of the normalized Hamiltonian. By analyzing the Floquet multipliers of the linearized equations of perturbed motion, the unstable region of the resonant rotation and the region of stability in the first-order approximation are determined in the dimensionless parameter plane. In addition, the third- and fourth-order resonances are obtained in the linear stability region and further nonlinear stability analysis is performed in the third- and fourth-order resonant cases.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"28 2\",\"pages\":\"162 - 190\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S156035472302003X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S156035472302003X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了质心在中心牛顿引力场中沿椭圆轨道运动的对称陀螺在三阶和四阶共振下的谐振旋转稳定性。共振旋转是陀螺仪围绕质心的一种特殊平面周期运动,即在其质心的两次轨道旋转中,物体在绝对空间中进行一次旋转。将陀螺的运动方程导出为一个三自由度的周期哈密顿系统,并采用基于辛映射的构造算法计算该哈密顿系统的归一化系数。通过分析摄动线性化方程的Floquet乘子,在无量纲参数平面上确定了共振旋转的不稳定区域和一阶近似的稳定区域。此外,在线性稳定区域获得了三阶和四阶谐振,并对三阶和四阶谐振情况进行了进一步的非线性稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability Analysis of Resonant Rotation of a Gyrostat in an Elliptic Orbit Under Third-and Fourth-Order Resonances

This paper presents the stability of resonant rotation of a symmetric gyrostat under third- and fourth-order resonances, whose center of mass moves in an elliptic orbit in a central Newtonian gravitational field. The resonant rotation is a special planar periodic motion of the gyrostat about its center of mass, i. e., the body performs one rotation in absolute space during two orbital revolutions of its center of mass. The equations of motion of the gyrostat are derived as a periodic Hamiltonian system with three degrees of freedom and a constructive algorithm based on a symplectic map is used to calculate the coefficients of the normalized Hamiltonian. By analyzing the Floquet multipliers of the linearized equations of perturbed motion, the unstable region of the resonant rotation and the region of stability in the first-order approximation are determined in the dimensionless parameter plane. In addition, the third- and fourth-order resonances are obtained in the linear stability region and further nonlinear stability analysis is performed in the third- and fourth-order resonant cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
期刊最新文献
Routes to Chaos in a Three-Dimensional Cancer Model On Isolated Periodic Points of Diffeomorphisms with Expanding Attractors of Codimension 1 Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics Mechanism of Selectivity in the Coupled FitzHugh – Nagumo Neurons Foreword
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1