基于多层次特征融合的迁移学习用于人的再识别

Yingzhi Chen, Tianqi Yang
{"title":"基于多层次特征融合的迁移学习用于人的再识别","authors":"Yingzhi Chen, Tianqi Yang","doi":"10.5121/IJAIA.2019.10302","DOIUrl":null,"url":null,"abstract":"Most of the currently known methods treat person re-identification task as classification problem and used commonly neural networks. However, these methods used only high-level convolutional feature or to express the feature representation of pedestrians. Moreover, the current data sets for person reidentification is relatively small. Under the limitation of the number of training set, deep convolutional networks are difficult to train adequately. Therefore, it is very worthwhile to introduce auxiliary data sets to help training. In order to solve this problem, this paper propose a novel method of deep transfer learning, and combines the comparison model with the classification model and multi-level fusion of the convolution features on the basis of transfer learning. In a multi-layers convolutional network, the characteristics of each layer of network are the dimensionality reduction of the previous layer of results, but the information of multi-level features is not only inclusive, but also has certain complementarity. We can using the information gap of different layers of convolutional neural networks to extract a better feature expression. Finally, the algorithm proposed in this paper is fully tested on four data sets (VIPeR, CUHK01, GRID and PRID450S). The obtained re-identification results prove the effectiveness of the algorithm.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MULTI-LEVEL FEATURE FUSION BASED TRANSFER LEARNING FOR PERSON RE-IDENTIFICATION\",\"authors\":\"Yingzhi Chen, Tianqi Yang\",\"doi\":\"10.5121/IJAIA.2019.10302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the currently known methods treat person re-identification task as classification problem and used commonly neural networks. However, these methods used only high-level convolutional feature or to express the feature representation of pedestrians. Moreover, the current data sets for person reidentification is relatively small. Under the limitation of the number of training set, deep convolutional networks are difficult to train adequately. Therefore, it is very worthwhile to introduce auxiliary data sets to help training. In order to solve this problem, this paper propose a novel method of deep transfer learning, and combines the comparison model with the classification model and multi-level fusion of the convolution features on the basis of transfer learning. In a multi-layers convolutional network, the characteristics of each layer of network are the dimensionality reduction of the previous layer of results, but the information of multi-level features is not only inclusive, but also has certain complementarity. We can using the information gap of different layers of convolutional neural networks to extract a better feature expression. Finally, the algorithm proposed in this paper is fully tested on four data sets (VIPeR, CUHK01, GRID and PRID450S). The obtained re-identification results prove the effectiveness of the algorithm.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJAIA.2019.10302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2019.10302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前已知的大多数方法都将人的重新识别任务视为分类问题,并且通常使用神经网络。然而,这些方法仅使用高级卷积特征或表示行人的特征表示。此外,目前用于个人重新身份识别的数据集相对较小。在训练集数量的限制下,深度卷积网络很难得到充分的训练。因此,引入辅助数据集来帮助训练是非常值得的。为了解决这个问题,本文提出了一种新的深度迁移学习方法,并将比较模型与分类模型相结合,在迁移学习的基础上对卷积特征进行多级融合。在多层卷积网络中,每一层网络的特征都是前一层结果的降维,但多层特征的信息不仅具有包容性,而且具有一定的互补性。我们可以利用不同层卷积神经网络的信息间隙来提取更好的特征表达式。最后,本文提出的算法在四个数据集(VIPeR、CUHK01、GRID和PRID450S)上进行了充分的测试。所获得的重新识别结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MULTI-LEVEL FEATURE FUSION BASED TRANSFER LEARNING FOR PERSON RE-IDENTIFICATION
Most of the currently known methods treat person re-identification task as classification problem and used commonly neural networks. However, these methods used only high-level convolutional feature or to express the feature representation of pedestrians. Moreover, the current data sets for person reidentification is relatively small. Under the limitation of the number of training set, deep convolutional networks are difficult to train adequately. Therefore, it is very worthwhile to introduce auxiliary data sets to help training. In order to solve this problem, this paper propose a novel method of deep transfer learning, and combines the comparison model with the classification model and multi-level fusion of the convolution features on the basis of transfer learning. In a multi-layers convolutional network, the characteristics of each layer of network are the dimensionality reduction of the previous layer of results, but the information of multi-level features is not only inclusive, but also has certain complementarity. We can using the information gap of different layers of convolutional neural networks to extract a better feature expression. Finally, the algorithm proposed in this paper is fully tested on four data sets (VIPeR, CUHK01, GRID and PRID450S). The obtained re-identification results prove the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1