{"title":"墨西哥科阿韦拉圣马科斯地区的地质观测:Laramide造山运动期间Sabinas盆地沉积层状铜银成矿的案例","authors":"J. Perelló","doi":"10.18268/bsgm2021v73n3a160321","DOIUrl":null,"url":null,"abstract":"The sediment-hosted stratiform copper–silver mineralization in the San Marcos area of Coahuila, northeastern Mexico occurs predominantly at an Early Cretaceous redox boundary between footwall siliciclastic red beds of the San Marcos Formation and hanging-wall carbonate strata of the Cupido Formation in the Sabinas basin. The hypogene mineralization is mainly present as chalcocite-group minerals, with additional bornite and chalcopyrite, and everywhere occurs in both disseminated and vein/veinlet forms. Supergene copper-bearing oxides (malachite, chalcanthite, azurite, chrysocolla) are, however, the dominant surface expression of the mineralization. Additional sediment-hosted stratiform copper–silver mineralization also occurs, albeit erratically, in lower strata of the Sabinas basin as well as in veins in basement granitoids, thus spanning ~3000 m of basin stratigraphy. Where best developed, the stratiform mineralization displays intense structural control proximal to the regional San Marcos fault system. This major bounding fault, regional in nature and with numerous periods of activity, controlled the evolution of the Sabinas basin. Structural controls on mineralization include stacked, shallow-angle, bedding-parallel, northeast-vergent thrust faults and associated drag folds, in addition to numerous, steeply-dipping, northeast-trending copper-bearing veins and veinlets. The mineralized veins and veinlets, and the bedding-parallel thrusts display mutually crosscutting relationships. These elements are all consistent and in harmony with a regional northeast-trending direction of horizontal shortening accompanying reverse motion of the San Marcos fault system. Inversion along the San Marcos fault system, and the entire Sabinas basin in the Paleogene from ~60 to 40 Ma, resulted from wholesale contractional deformation during the Laramide (Mexican) orogeny. Hence, emplacement of the sediment-hosted stratiform copper–silver mineralization at San Marcos, and elsewhere in the larger Coahuila region, is interpreted as a natural corollary of large-scale, metal-bearing fluid expulsion, migration, and precipitation resulting from orogenic shortening, lithostatic loading, and squeezing of the Sabinas basin during Mexican orogen construction. Although sedimentation of the host strata in the Sabinas basin took place in a pericratonic setting associated with the opening of the Gulf of Mexico, sediment-hosted stratiform copper-silver mineralization occurred during orogenic uplift and conversion of the original basin into an orogen-foreland pair, with similarities to some of the world´s largest sediment-hosted stratiform copper provinces.","PeriodicalId":48849,"journal":{"name":"Boletin De La Sociedad Geologica Mexicana","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geologic observations in the San Marcos area, Coahuila, Mexico: the case for sediment-hosted stratiform copper–silver mineralization in the Sabinas basin during the Laramide orogeny\",\"authors\":\"J. Perelló\",\"doi\":\"10.18268/bsgm2021v73n3a160321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sediment-hosted stratiform copper–silver mineralization in the San Marcos area of Coahuila, northeastern Mexico occurs predominantly at an Early Cretaceous redox boundary between footwall siliciclastic red beds of the San Marcos Formation and hanging-wall carbonate strata of the Cupido Formation in the Sabinas basin. The hypogene mineralization is mainly present as chalcocite-group minerals, with additional bornite and chalcopyrite, and everywhere occurs in both disseminated and vein/veinlet forms. Supergene copper-bearing oxides (malachite, chalcanthite, azurite, chrysocolla) are, however, the dominant surface expression of the mineralization. Additional sediment-hosted stratiform copper–silver mineralization also occurs, albeit erratically, in lower strata of the Sabinas basin as well as in veins in basement granitoids, thus spanning ~3000 m of basin stratigraphy. Where best developed, the stratiform mineralization displays intense structural control proximal to the regional San Marcos fault system. This major bounding fault, regional in nature and with numerous periods of activity, controlled the evolution of the Sabinas basin. Structural controls on mineralization include stacked, shallow-angle, bedding-parallel, northeast-vergent thrust faults and associated drag folds, in addition to numerous, steeply-dipping, northeast-trending copper-bearing veins and veinlets. The mineralized veins and veinlets, and the bedding-parallel thrusts display mutually crosscutting relationships. These elements are all consistent and in harmony with a regional northeast-trending direction of horizontal shortening accompanying reverse motion of the San Marcos fault system. Inversion along the San Marcos fault system, and the entire Sabinas basin in the Paleogene from ~60 to 40 Ma, resulted from wholesale contractional deformation during the Laramide (Mexican) orogeny. Hence, emplacement of the sediment-hosted stratiform copper–silver mineralization at San Marcos, and elsewhere in the larger Coahuila region, is interpreted as a natural corollary of large-scale, metal-bearing fluid expulsion, migration, and precipitation resulting from orogenic shortening, lithostatic loading, and squeezing of the Sabinas basin during Mexican orogen construction. Although sedimentation of the host strata in the Sabinas basin took place in a pericratonic setting associated with the opening of the Gulf of Mexico, sediment-hosted stratiform copper-silver mineralization occurred during orogenic uplift and conversion of the original basin into an orogen-foreland pair, with similarities to some of the world´s largest sediment-hosted stratiform copper provinces.\",\"PeriodicalId\":48849,\"journal\":{\"name\":\"Boletin De La Sociedad Geologica Mexicana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletin De La Sociedad Geologica Mexicana\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.18268/bsgm2021v73n3a160321\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin De La Sociedad Geologica Mexicana","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18268/bsgm2021v73n3a160321","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOLOGY","Score":null,"Total":0}
Geologic observations in the San Marcos area, Coahuila, Mexico: the case for sediment-hosted stratiform copper–silver mineralization in the Sabinas basin during the Laramide orogeny
The sediment-hosted stratiform copper–silver mineralization in the San Marcos area of Coahuila, northeastern Mexico occurs predominantly at an Early Cretaceous redox boundary between footwall siliciclastic red beds of the San Marcos Formation and hanging-wall carbonate strata of the Cupido Formation in the Sabinas basin. The hypogene mineralization is mainly present as chalcocite-group minerals, with additional bornite and chalcopyrite, and everywhere occurs in both disseminated and vein/veinlet forms. Supergene copper-bearing oxides (malachite, chalcanthite, azurite, chrysocolla) are, however, the dominant surface expression of the mineralization. Additional sediment-hosted stratiform copper–silver mineralization also occurs, albeit erratically, in lower strata of the Sabinas basin as well as in veins in basement granitoids, thus spanning ~3000 m of basin stratigraphy. Where best developed, the stratiform mineralization displays intense structural control proximal to the regional San Marcos fault system. This major bounding fault, regional in nature and with numerous periods of activity, controlled the evolution of the Sabinas basin. Structural controls on mineralization include stacked, shallow-angle, bedding-parallel, northeast-vergent thrust faults and associated drag folds, in addition to numerous, steeply-dipping, northeast-trending copper-bearing veins and veinlets. The mineralized veins and veinlets, and the bedding-parallel thrusts display mutually crosscutting relationships. These elements are all consistent and in harmony with a regional northeast-trending direction of horizontal shortening accompanying reverse motion of the San Marcos fault system. Inversion along the San Marcos fault system, and the entire Sabinas basin in the Paleogene from ~60 to 40 Ma, resulted from wholesale contractional deformation during the Laramide (Mexican) orogeny. Hence, emplacement of the sediment-hosted stratiform copper–silver mineralization at San Marcos, and elsewhere in the larger Coahuila region, is interpreted as a natural corollary of large-scale, metal-bearing fluid expulsion, migration, and precipitation resulting from orogenic shortening, lithostatic loading, and squeezing of the Sabinas basin during Mexican orogen construction. Although sedimentation of the host strata in the Sabinas basin took place in a pericratonic setting associated with the opening of the Gulf of Mexico, sediment-hosted stratiform copper-silver mineralization occurred during orogenic uplift and conversion of the original basin into an orogen-foreland pair, with similarities to some of the world´s largest sediment-hosted stratiform copper provinces.
期刊介绍:
The Boletín de la Sociedad Geológica Mexicana is a completely free-access electronic journal published semi-annually that publishes papers and technical notes with its main objective to contribute to an understanding of the geology of Mexico, of its neighbor areas, and of geologically similar areas anywhere on Earth’s crust. Geology has no boundaries so we may publish papers on any area of knowledge that is interesting to our readers.
We also favor the publication of papers on relatively unfamiliar subjects and objectives in mainstream journals, e.g., papers devoted to new methodologies or their improvement, and areas of knowledge that in the past had relatively little attention paid them in Mexican journals, such as urban geology, water management, environmental geology, and ore deposits, among others. Mexico is a land of volcanos, earthquakes, vast resources in minerals and petroleum, and a shortage of water. Consequently, these topics should certainly be of major interest to our readers, our Society, and society in general. Furthermore, the Boletín has been published since 1904; that makes it one of the oldest scientific journals currently active in Mexico and, most notably, its entire contents, from the first issue on, are available online.