Alejandra Ortiz-González, P. P. González-Pérez, M. Cárdenas-García, M. Hernández-Linares
{"title":"PI3K/AKT/mTOR通路在乳腺癌模型中抗增殖作用的计算机预测","authors":"Alejandra Ortiz-González, P. P. González-Pérez, M. Cárdenas-García, M. Hernández-Linares","doi":"10.1177/11769351221087028","DOIUrl":null,"url":null,"abstract":"The search for new cancer treatments from traditional medicine involves developing studies to understand at the molecular level different cell signaling pathways involved in cancer development. In this work, we present a model of the PI3K/Akt/mTOR pathway, which plays a key role in cell cycle regulation and is related to cell survival, proliferation, and growth in cancer, as well as resistance to antitumor therapies, so finding drugs that act on this pathway is ideal to propose a new adjuvant treatment. The aim of this work was to model, simulate and predict in silico using the Big Data-Cellulat platform the possible targets in the PI3K/Akt/mTOR pathway on which the Opuntia joconostle extract acts, as well as to indicate the concentration range to be used to find the mean lethal dose in in vitro experiments on breast cancer cells. The in silico results show that, in a cancer cell, the activation of JAK and STAT, as well as PI3K and Akt is related to the effect of cell proliferation, angiogenesis, and inhibition of apoptosis, and that the extract of O. joconostle has an antiproliferative effect on breast cancer cells by inhibiting cell proliferation, regulating the cell cycle and inhibiting apoptosis through this signaling pathway. In vitro it was demonstrated that the extract shows an antiproliferative effect, causing the arrest of cells in the G2/M phase of the cell cycle. Therefore, it is concluded that the use of in silico tools is a valuable method to perform virtual experiments and discover new treatments. The use of this type of model supports in vitro experimentation, reducing the costs and number of experiments in the real laboratory.","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"In silico Prediction on the PI3K/AKT/mTOR Pathway of the Antiproliferative Effect of O. joconostle in Breast Cancer Models\",\"authors\":\"Alejandra Ortiz-González, P. P. González-Pérez, M. Cárdenas-García, M. Hernández-Linares\",\"doi\":\"10.1177/11769351221087028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The search for new cancer treatments from traditional medicine involves developing studies to understand at the molecular level different cell signaling pathways involved in cancer development. In this work, we present a model of the PI3K/Akt/mTOR pathway, which plays a key role in cell cycle regulation and is related to cell survival, proliferation, and growth in cancer, as well as resistance to antitumor therapies, so finding drugs that act on this pathway is ideal to propose a new adjuvant treatment. The aim of this work was to model, simulate and predict in silico using the Big Data-Cellulat platform the possible targets in the PI3K/Akt/mTOR pathway on which the Opuntia joconostle extract acts, as well as to indicate the concentration range to be used to find the mean lethal dose in in vitro experiments on breast cancer cells. The in silico results show that, in a cancer cell, the activation of JAK and STAT, as well as PI3K and Akt is related to the effect of cell proliferation, angiogenesis, and inhibition of apoptosis, and that the extract of O. joconostle has an antiproliferative effect on breast cancer cells by inhibiting cell proliferation, regulating the cell cycle and inhibiting apoptosis through this signaling pathway. In vitro it was demonstrated that the extract shows an antiproliferative effect, causing the arrest of cells in the G2/M phase of the cell cycle. Therefore, it is concluded that the use of in silico tools is a valuable method to perform virtual experiments and discover new treatments. The use of this type of model supports in vitro experimentation, reducing the costs and number of experiments in the real laboratory.\",\"PeriodicalId\":35418,\"journal\":{\"name\":\"Cancer Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11769351221087028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351221087028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
In silico Prediction on the PI3K/AKT/mTOR Pathway of the Antiproliferative Effect of O. joconostle in Breast Cancer Models
The search for new cancer treatments from traditional medicine involves developing studies to understand at the molecular level different cell signaling pathways involved in cancer development. In this work, we present a model of the PI3K/Akt/mTOR pathway, which plays a key role in cell cycle regulation and is related to cell survival, proliferation, and growth in cancer, as well as resistance to antitumor therapies, so finding drugs that act on this pathway is ideal to propose a new adjuvant treatment. The aim of this work was to model, simulate and predict in silico using the Big Data-Cellulat platform the possible targets in the PI3K/Akt/mTOR pathway on which the Opuntia joconostle extract acts, as well as to indicate the concentration range to be used to find the mean lethal dose in in vitro experiments on breast cancer cells. The in silico results show that, in a cancer cell, the activation of JAK and STAT, as well as PI3K and Akt is related to the effect of cell proliferation, angiogenesis, and inhibition of apoptosis, and that the extract of O. joconostle has an antiproliferative effect on breast cancer cells by inhibiting cell proliferation, regulating the cell cycle and inhibiting apoptosis through this signaling pathway. In vitro it was demonstrated that the extract shows an antiproliferative effect, causing the arrest of cells in the G2/M phase of the cell cycle. Therefore, it is concluded that the use of in silico tools is a valuable method to perform virtual experiments and discover new treatments. The use of this type of model supports in vitro experimentation, reducing the costs and number of experiments in the real laboratory.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.