{"title":"表征自然温度和湿度环境的严重性","authors":"D. Aldridge","doi":"10.17764/1098-4321.60.1.42","DOIUrl":null,"url":null,"abstract":"Abstract Severe yet common product environmental tests are 1000 hours at 85 °C/85% RH or 95 °C/95% RH for products, circuit card assemblies, and electronic components. Such environments never occur naturally; however, they attempt to simulate the corrosion damage that could be expected in service. To what natural environment do these tests correlate? Further, how do tests based on MIL-HDBK-310, MIL-STD-810, and STANAG 2895 B3 daily environments compare to these standard test environments? The analysis employs the Physics-of-Failure (POF) Peck power law temperature-humidity model with common conservative values for the Arrhenius activation energy and the relative humidity exponent, based on aluminum corrosion, coupled with climatological data from 49 United States weather stations and 19 international locations. The monthly average temperature and humidity extremes were transformed into an hourly diurnal cycle assumed to occur every day of each month. Using the power law model the equivalent time at the te...","PeriodicalId":35935,"journal":{"name":"Journal of the IEST","volume":"60 1","pages":"42-55"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterizing the Natural Temperature and Humidity Environment Severity\",\"authors\":\"D. Aldridge\",\"doi\":\"10.17764/1098-4321.60.1.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Severe yet common product environmental tests are 1000 hours at 85 °C/85% RH or 95 °C/95% RH for products, circuit card assemblies, and electronic components. Such environments never occur naturally; however, they attempt to simulate the corrosion damage that could be expected in service. To what natural environment do these tests correlate? Further, how do tests based on MIL-HDBK-310, MIL-STD-810, and STANAG 2895 B3 daily environments compare to these standard test environments? The analysis employs the Physics-of-Failure (POF) Peck power law temperature-humidity model with common conservative values for the Arrhenius activation energy and the relative humidity exponent, based on aluminum corrosion, coupled with climatological data from 49 United States weather stations and 19 international locations. The monthly average temperature and humidity extremes were transformed into an hourly diurnal cycle assumed to occur every day of each month. Using the power law model the equivalent time at the te...\",\"PeriodicalId\":35935,\"journal\":{\"name\":\"Journal of the IEST\",\"volume\":\"60 1\",\"pages\":\"42-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the IEST\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17764/1098-4321.60.1.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the IEST","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17764/1098-4321.60.1.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Characterizing the Natural Temperature and Humidity Environment Severity
Abstract Severe yet common product environmental tests are 1000 hours at 85 °C/85% RH or 95 °C/95% RH for products, circuit card assemblies, and electronic components. Such environments never occur naturally; however, they attempt to simulate the corrosion damage that could be expected in service. To what natural environment do these tests correlate? Further, how do tests based on MIL-HDBK-310, MIL-STD-810, and STANAG 2895 B3 daily environments compare to these standard test environments? The analysis employs the Physics-of-Failure (POF) Peck power law temperature-humidity model with common conservative values for the Arrhenius activation energy and the relative humidity exponent, based on aluminum corrosion, coupled with climatological data from 49 United States weather stations and 19 international locations. The monthly average temperature and humidity extremes were transformed into an hourly diurnal cycle assumed to occur every day of each month. Using the power law model the equivalent time at the te...
期刊介绍:
The Journal of the IEST is an official publication of the Institute of Environmental Sciences and Technology and is of archival quality and noncommercial in nature. It was established to advance knowledge through technical articles selected by peer review, and has been published for over 50 years as a benefit to IEST members and the technical community at large as as a permanent record of progress in the science and technology of the environmental sciences