用于协作跨边缘分析的经济高效的任务调度

Zhao Kongyang, Gao Bin, Zhou Zhi
{"title":"用于协作跨边缘分析的经济高效的任务调度","authors":"Zhao Kongyang, Gao Bin, Zhou Zhi","doi":"10.12142/ZTECOM.202102003","DOIUrl":null,"url":null,"abstract":"Collaborative cross-edge analytics is a new computing paradigm in which Inter⁃ net of Things (IoT) data analytics is performed across multiple geographically dispersed edge clouds. Existing work on collaborative cross-edge analytics mostly focuses on reduc⁃ ing either analytics response time or wide-area network (WAN) traffic volume. In this work, we empirically demonstrate that reducing either analytics response time or network traffic volume does not necessarily minimize the WAN traffic cost, due to the price hetero⁃ geneity of WAN links. To explicitly leverage the price heterogeneity for WAN cost minimi⁃ zation, we propose to schedule analytic tasks based on both price and bandwidth heteroge⁃ neities. Unfortunately, the problem of WAN cost minimization underperformance con⁃ straint is shown non-deterministic polynomial (NP)-hard and thus computationally intrac⁃ table for large inputs. To address this challenge, we propose priceand performanceaware geo-distributed analytics (PPGA) , an efficient task scheduling heuristic that im⁃ proves the cost-efficiency of IoT data analytic jobs across edge datacenters. We imple⁃ ment PPGA based on Apache Spark and conduct extensive experiments on Amazon EC2 to verify the efficacy of PPGA.","PeriodicalId":61991,"journal":{"name":"ZTE Communications","volume":"19 1","pages":"11-19"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective Task Scheduling for Collaborative Cross-Edge Analytics\",\"authors\":\"Zhao Kongyang, Gao Bin, Zhou Zhi\",\"doi\":\"10.12142/ZTECOM.202102003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative cross-edge analytics is a new computing paradigm in which Inter⁃ net of Things (IoT) data analytics is performed across multiple geographically dispersed edge clouds. Existing work on collaborative cross-edge analytics mostly focuses on reduc⁃ ing either analytics response time or wide-area network (WAN) traffic volume. In this work, we empirically demonstrate that reducing either analytics response time or network traffic volume does not necessarily minimize the WAN traffic cost, due to the price hetero⁃ geneity of WAN links. To explicitly leverage the price heterogeneity for WAN cost minimi⁃ zation, we propose to schedule analytic tasks based on both price and bandwidth heteroge⁃ neities. Unfortunately, the problem of WAN cost minimization underperformance con⁃ straint is shown non-deterministic polynomial (NP)-hard and thus computationally intrac⁃ table for large inputs. To address this challenge, we propose priceand performanceaware geo-distributed analytics (PPGA) , an efficient task scheduling heuristic that im⁃ proves the cost-efficiency of IoT data analytic jobs across edge datacenters. We imple⁃ ment PPGA based on Apache Spark and conduct extensive experiments on Amazon EC2 to verify the efficacy of PPGA.\",\"PeriodicalId\":61991,\"journal\":{\"name\":\"ZTE Communications\",\"volume\":\"19 1\",\"pages\":\"11-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZTE Communications\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.12142/ZTECOM.202102003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZTE Communications","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12142/ZTECOM.202102003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

协作跨边缘分析是一种新的计算范式,其中物联网(IoT)数据分析是在多个地理分散的边缘云上执行的。现有的跨边缘协作分析工作主要集中在减少分析响应时间或广域网(WAN)流量。在这项工作中,我们实证证明,由于WAN链路的价格异质性,减少分析响应时间或网络流量并不一定能使WAN流量成本最小化。为了明确利用WAN成本最小化的价格异质性,我们建议基于价格和带宽异质性来调度分析任务。不幸的是,广域网成本最小化性能不佳约束的问题被证明是非确定性多项式(NP)困难的,因此在大输入的计算上是表格内的。为了应对这一挑战,我们提出了价格和性能感知的地理分布式分析(PPGA),这是一种高效的任务调度启发式方法,可以在边缘数据中心证明物联网数据分析工作的成本效率。我们在Apache Spark上实现了PPGA,并在Amazon EC2上进行了大量实验来验证PPGA的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-Effective Task Scheduling for Collaborative Cross-Edge Analytics
Collaborative cross-edge analytics is a new computing paradigm in which Inter⁃ net of Things (IoT) data analytics is performed across multiple geographically dispersed edge clouds. Existing work on collaborative cross-edge analytics mostly focuses on reduc⁃ ing either analytics response time or wide-area network (WAN) traffic volume. In this work, we empirically demonstrate that reducing either analytics response time or network traffic volume does not necessarily minimize the WAN traffic cost, due to the price hetero⁃ geneity of WAN links. To explicitly leverage the price heterogeneity for WAN cost minimi⁃ zation, we propose to schedule analytic tasks based on both price and bandwidth heteroge⁃ neities. Unfortunately, the problem of WAN cost minimization underperformance con⁃ straint is shown non-deterministic polynomial (NP)-hard and thus computationally intrac⁃ table for large inputs. To address this challenge, we propose priceand performanceaware geo-distributed analytics (PPGA) , an efficient task scheduling heuristic that im⁃ proves the cost-efficiency of IoT data analytic jobs across edge datacenters. We imple⁃ ment PPGA based on Apache Spark and conduct extensive experiments on Amazon EC2 to verify the efficacy of PPGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1320
期刊最新文献
Artificial Intelligence Rehabilitation Evaluation and Training System for Degeneration of Joint Disease A Survey of Intelligent Sensing Technologies in Autonomous Driving Using UAV to Detect Truth for Clean Data Collection in Sensor‑Cloud Systems Semiconductor Optical Amplifier and Gain Chip Used in Wavelength Tunable Lasers Feedback‑Aware Anomaly Detection Through Logs for Large‑Scale Software Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1