{"title":"天然萜烯内酰胺载体增强透皮给药研究进展","authors":"Bhumika Kumar, Mukesh Pandey, Rohan Aggarwal, Pravat Kumar Sahoo","doi":"10.1186/s43094-022-00440-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Transdermal drug delivery is one of the most widely used drug administration routes, which offer several advantages over other routes of drug delivery. The apical layer of the skin called the <i>stratum corneum</i> is the most dominant obstacle in the transdermal drug delivery, which restricts the passage of drugs across the skin. Considerable strategies have been applied to enhance the rate of permeation across the epithelial cells; however, the most widely used strategy is the use of sorption boosters, also known as permeation enhancers.</p><h3>Main body</h3><p>Terpenes were considered as efficient skin permeation enhancers and are generally recognized as safe as per Food and Drug Administration. Terpenes improve the permeability of drugs either by destructing the <i>stratum corneum</i>’s tightly packed lipid framework, excessive diffusivity of drug in cell membrane or by rampant drug partitioning into epithelial cells. Various vesicular systems have been developed and utilized for the transdermal delivery of many drugs. Invasomes are one such novel vesicular system developed which are composed of phospholipids, ethanol and terpenes. The combined presence of ethanol and terpenes provides exceptional flexibility to the vesicles and improves the permeation across the barrier offered due to the <i>stratum corneum</i> as both ethanol and terpenes act as permeation enhancers. Therefore, utilization of invasomes as carriers to facilitate higher rate of drug permeation through the skin can be a very useful approach to improve transdermal drug delivery of a drug.</p><h3>Conclusion</h3><p>The paper focuses on a broad updated view of terpenes as effective permeation enhancers and invasomes along with their applications in the pharmaceutical formulations.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"8 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-022-00440-6","citationCount":"4","resultStr":"{\"title\":\"A comprehensive review on invasomal carriers incorporating natural terpenes for augmented transdermal delivery\",\"authors\":\"Bhumika Kumar, Mukesh Pandey, Rohan Aggarwal, Pravat Kumar Sahoo\",\"doi\":\"10.1186/s43094-022-00440-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Transdermal drug delivery is one of the most widely used drug administration routes, which offer several advantages over other routes of drug delivery. The apical layer of the skin called the <i>stratum corneum</i> is the most dominant obstacle in the transdermal drug delivery, which restricts the passage of drugs across the skin. Considerable strategies have been applied to enhance the rate of permeation across the epithelial cells; however, the most widely used strategy is the use of sorption boosters, also known as permeation enhancers.</p><h3>Main body</h3><p>Terpenes were considered as efficient skin permeation enhancers and are generally recognized as safe as per Food and Drug Administration. Terpenes improve the permeability of drugs either by destructing the <i>stratum corneum</i>’s tightly packed lipid framework, excessive diffusivity of drug in cell membrane or by rampant drug partitioning into epithelial cells. Various vesicular systems have been developed and utilized for the transdermal delivery of many drugs. Invasomes are one such novel vesicular system developed which are composed of phospholipids, ethanol and terpenes. The combined presence of ethanol and terpenes provides exceptional flexibility to the vesicles and improves the permeation across the barrier offered due to the <i>stratum corneum</i> as both ethanol and terpenes act as permeation enhancers. Therefore, utilization of invasomes as carriers to facilitate higher rate of drug permeation through the skin can be a very useful approach to improve transdermal drug delivery of a drug.</p><h3>Conclusion</h3><p>The paper focuses on a broad updated view of terpenes as effective permeation enhancers and invasomes along with their applications in the pharmaceutical formulations.</p></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-022-00440-6\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-022-00440-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-022-00440-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A comprehensive review on invasomal carriers incorporating natural terpenes for augmented transdermal delivery
Background
Transdermal drug delivery is one of the most widely used drug administration routes, which offer several advantages over other routes of drug delivery. The apical layer of the skin called the stratum corneum is the most dominant obstacle in the transdermal drug delivery, which restricts the passage of drugs across the skin. Considerable strategies have been applied to enhance the rate of permeation across the epithelial cells; however, the most widely used strategy is the use of sorption boosters, also known as permeation enhancers.
Main body
Terpenes were considered as efficient skin permeation enhancers and are generally recognized as safe as per Food and Drug Administration. Terpenes improve the permeability of drugs either by destructing the stratum corneum’s tightly packed lipid framework, excessive diffusivity of drug in cell membrane or by rampant drug partitioning into epithelial cells. Various vesicular systems have been developed and utilized for the transdermal delivery of many drugs. Invasomes are one such novel vesicular system developed which are composed of phospholipids, ethanol and terpenes. The combined presence of ethanol and terpenes provides exceptional flexibility to the vesicles and improves the permeation across the barrier offered due to the stratum corneum as both ethanol and terpenes act as permeation enhancers. Therefore, utilization of invasomes as carriers to facilitate higher rate of drug permeation through the skin can be a very useful approach to improve transdermal drug delivery of a drug.
Conclusion
The paper focuses on a broad updated view of terpenes as effective permeation enhancers and invasomes along with their applications in the pharmaceutical formulations.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.