{"title":"折纸图案电容器与程序应变灵敏度","authors":"K. Dorsey, Huiying Huang, Yu-Ting Wen","doi":"10.1088/2399-7532/ac6556","DOIUrl":null,"url":null,"abstract":"Origami patterns have previously been investigated for novel mechanical properties and applications to soft and deployable robotics. This work models and characterizes the mechanical and electrical properties of origami-patterned capacitive strain sensors. Miura-patterned capacitors with different fold angles are fabricated with a silicone body and foil electrodes. The planar strain sensitivity ratio is tunable from 0.2 to 0.5 with fold angles, while all-soft patterns demonstrate low mechanical tunability through fold angle. We conclude by offering recommendations for designing and modeling future origami-patterned soft material sensors.","PeriodicalId":18949,"journal":{"name":"Multifunctional Materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Origami-patterned capacitor with programmed strain sensitivity\",\"authors\":\"K. Dorsey, Huiying Huang, Yu-Ting Wen\",\"doi\":\"10.1088/2399-7532/ac6556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Origami patterns have previously been investigated for novel mechanical properties and applications to soft and deployable robotics. This work models and characterizes the mechanical and electrical properties of origami-patterned capacitive strain sensors. Miura-patterned capacitors with different fold angles are fabricated with a silicone body and foil electrodes. The planar strain sensitivity ratio is tunable from 0.2 to 0.5 with fold angles, while all-soft patterns demonstrate low mechanical tunability through fold angle. We conclude by offering recommendations for designing and modeling future origami-patterned soft material sensors.\",\"PeriodicalId\":18949,\"journal\":{\"name\":\"Multifunctional Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multifunctional Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-7532/ac6556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multifunctional Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-7532/ac6556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Origami-patterned capacitor with programmed strain sensitivity
Origami patterns have previously been investigated for novel mechanical properties and applications to soft and deployable robotics. This work models and characterizes the mechanical and electrical properties of origami-patterned capacitive strain sensors. Miura-patterned capacitors with different fold angles are fabricated with a silicone body and foil electrodes. The planar strain sensitivity ratio is tunable from 0.2 to 0.5 with fold angles, while all-soft patterns demonstrate low mechanical tunability through fold angle. We conclude by offering recommendations for designing and modeling future origami-patterned soft material sensors.