非标准空间的数据分析

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2020-09-08 DOI:10.1002/wics.1526
S. Huckemann, B. Eltzner
{"title":"非标准空间的数据分析","authors":"S. Huckemann, B. Eltzner","doi":"10.1002/wics.1526","DOIUrl":null,"url":null,"abstract":"The task to write on data analysis on nonstandard spaces is quite substantial, with a huge body of literature to cover, from parametric to nonparametrics, from shape spaces to Wasserstein spaces. In this survey we convey simple (e.g., Fréchet means) and more complicated ideas (e.g., empirical process theory), common to many approaches with focus on their interaction with one‐another. Indeed, this field is fast growing and it is imperative to develop a mathematical view point, drawing power, and diversity from a higher level of abstraction, for example, by introducing generalized Fréchet means. While many problems have found ingenious solutions (e.g., Procrustes analysis for principal component analysis [PCA] extensions on shape spaces and diffusion on the frame bundle to mimic anisotropic Gaussians), more problems emerge, often more difficult (e.g., topology and geometry influencing limiting rates and defining generic intrinsic PCA extensions). Along this survey, we point out some open problems, that will, as it seems, keep mathematicians, statisticians, computer and data scientists busy for a while.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1526","citationCount":"12","resultStr":"{\"title\":\"Data analysis on nonstandard spaces\",\"authors\":\"S. Huckemann, B. Eltzner\",\"doi\":\"10.1002/wics.1526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task to write on data analysis on nonstandard spaces is quite substantial, with a huge body of literature to cover, from parametric to nonparametrics, from shape spaces to Wasserstein spaces. In this survey we convey simple (e.g., Fréchet means) and more complicated ideas (e.g., empirical process theory), common to many approaches with focus on their interaction with one‐another. Indeed, this field is fast growing and it is imperative to develop a mathematical view point, drawing power, and diversity from a higher level of abstraction, for example, by introducing generalized Fréchet means. While many problems have found ingenious solutions (e.g., Procrustes analysis for principal component analysis [PCA] extensions on shape spaces and diffusion on the frame bundle to mimic anisotropic Gaussians), more problems emerge, often more difficult (e.g., topology and geometry influencing limiting rates and defining generic intrinsic PCA extensions). Along this survey, we point out some open problems, that will, as it seems, keep mathematicians, statisticians, computer and data scientists busy for a while.\",\"PeriodicalId\":47779,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wics.1526\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/wics.1526\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1526","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

摘要

关于非标准空间的数据分析的写作任务相当艰巨,要涵盖大量文献,从参数到非框架,从形状空间到Wasserstein空间。在这项调查中,我们传达了简单的(例如,Fréchet的意思)和更复杂的想法(例如,经验过程理论),这是许多方法的共同点,重点是它们之间的相互作用。事实上,这个领域正在快速发展,必须从更高的抽象层次发展数学观点、绘图能力和多样性,例如,通过引入广义Fréchet方法。虽然许多问题已经找到了巧妙的解决方案(例如,形状空间上的主成分分析[PCA]扩展的Procrustes分析和模拟各向异性高斯的框架束上的扩散),但出现了更多的问题,通常更困难(例如,拓扑和几何影响限制率并定义通用的固有PCA扩展)。在这项调查中,我们指出了一些悬而未决的问题,这些问题似乎会让数学家、统计学家、计算机和数据科学家忙碌一段时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data analysis on nonstandard spaces
The task to write on data analysis on nonstandard spaces is quite substantial, with a huge body of literature to cover, from parametric to nonparametrics, from shape spaces to Wasserstein spaces. In this survey we convey simple (e.g., Fréchet means) and more complicated ideas (e.g., empirical process theory), common to many approaches with focus on their interaction with one‐another. Indeed, this field is fast growing and it is imperative to develop a mathematical view point, drawing power, and diversity from a higher level of abstraction, for example, by introducing generalized Fréchet means. While many problems have found ingenious solutions (e.g., Procrustes analysis for principal component analysis [PCA] extensions on shape spaces and diffusion on the frame bundle to mimic anisotropic Gaussians), more problems emerge, often more difficult (e.g., topology and geometry influencing limiting rates and defining generic intrinsic PCA extensions). Along this survey, we point out some open problems, that will, as it seems, keep mathematicians, statisticians, computer and data scientists busy for a while.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1