监测CKD患者的危险因素并提高对治疗的依从性。SMIT-CKD项目。(预印本)

Antonio Vilasi, Vincenzo Antonio Panuccio, Salvatore Morante, Antonino Villa, Maria Carmela Versace, Sabrina Mezzatesta, Sergio Mercuri, Rosalinda Inguanta, Giuseppe Aiello, Demetrio Cutrupi, Rossella Puglisi, Salvatore Capria, Maurizio Li Vigni, Giovanni Tripepi, Claudia Torino
{"title":"监测CKD患者的危险因素并提高对治疗的依从性。SMIT-CKD项目。(预印本)","authors":"Antonio Vilasi, Vincenzo Antonio Panuccio, Salvatore Morante, Antonino Villa, Maria Carmela Versace, Sabrina Mezzatesta, Sergio Mercuri, Rosalinda Inguanta, Giuseppe Aiello, Demetrio Cutrupi, Rossella Puglisi, Salvatore Capria, Maurizio Li Vigni, Giovanni Tripepi, Claudia Torino","doi":"10.2196/36766","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic kidney disease is a major public health issue, with about 13% of the general adult population and 30% of the elderly affected. Patients in the last stage of this disease have an almost uniquely high risk of death and cardiovascular events, with reduced adherence to therapy representing an additional risk factor for cardiovascular morbidity and mortality. Considering the increased penetration of mobile phones, a mobile app could educate patients to autonomously monitor cardiorenal risk factors.</p><p><strong>Objective: </strong>With this background in mind, we developed an integrated system of a server and app with the aim of improving self-monitoring of cardiovascular and renal risk factors and adherence to therapy.</p><p><strong>Methods: </strong>The software infrastructure for both the Smit-CKD server and Smit-CKD app was developed using standard web-oriented development methodologies preferring open source tools when available. To make the Smit-CKD app suitable for Android and iOS, platforms that allow the development of a multiplatform app starting from a single source code were used. The integrated system was field tested with the help of 22 participants. User satisfaction and adherence to therapy were measured by questionnaires specifically designed for this study; regular use of the app was measured using the daily reports available on the platform.</p><p><strong>Results: </strong>The Smit-CKD app allows the monitoring of cardiorenal risk factors, such as blood pressure, weight, and blood glucose. Collected data are transmitted in real time to the referring general practitioner. In addition, special reminders improve adherence to the medication regimen. Via the Smit-CKD server, general practitioners can monitor the clinical status of their patients and their adherence to therapy. During the test phase, 73% (16/22) of subjects entered all the required data regularly and sent feedback on drug intake. After 6 months of use, the percentage of regular intake of medications rose from 64% (14/22) to 82% (18/22). Analysis of the evaluation questionnaires showed that both the app and server components were well accepted by the users.</p><p><strong>Conclusions: </strong>Our study demonstrated that a simple mobile app, created to self-monitor modifiable cardiorenal risk factors and adherence to therapy, is well tolerated by patients affected by chronic kidney disease. Further studies are required to clarify if the use of this integrated system will have long-term effects on therapy adherence and if self-monitoring of risk factors will improve clinical outcomes in this population.</p>","PeriodicalId":73552,"journal":{"name":"JMIR bioinformatics and biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135230/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monitoring Risk Factors and Improving Adherence to Therapy in Patients With Chronic Kidney Disease (Smit-CKD Project): Pilot Observational Study.\",\"authors\":\"Antonio Vilasi, Vincenzo Antonio Panuccio, Salvatore Morante, Antonino Villa, Maria Carmela Versace, Sabrina Mezzatesta, Sergio Mercuri, Rosalinda Inguanta, Giuseppe Aiello, Demetrio Cutrupi, Rossella Puglisi, Salvatore Capria, Maurizio Li Vigni, Giovanni Tripepi, Claudia Torino\",\"doi\":\"10.2196/36766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic kidney disease is a major public health issue, with about 13% of the general adult population and 30% of the elderly affected. Patients in the last stage of this disease have an almost uniquely high risk of death and cardiovascular events, with reduced adherence to therapy representing an additional risk factor for cardiovascular morbidity and mortality. Considering the increased penetration of mobile phones, a mobile app could educate patients to autonomously monitor cardiorenal risk factors.</p><p><strong>Objective: </strong>With this background in mind, we developed an integrated system of a server and app with the aim of improving self-monitoring of cardiovascular and renal risk factors and adherence to therapy.</p><p><strong>Methods: </strong>The software infrastructure for both the Smit-CKD server and Smit-CKD app was developed using standard web-oriented development methodologies preferring open source tools when available. To make the Smit-CKD app suitable for Android and iOS, platforms that allow the development of a multiplatform app starting from a single source code were used. The integrated system was field tested with the help of 22 participants. User satisfaction and adherence to therapy were measured by questionnaires specifically designed for this study; regular use of the app was measured using the daily reports available on the platform.</p><p><strong>Results: </strong>The Smit-CKD app allows the monitoring of cardiorenal risk factors, such as blood pressure, weight, and blood glucose. Collected data are transmitted in real time to the referring general practitioner. In addition, special reminders improve adherence to the medication regimen. Via the Smit-CKD server, general practitioners can monitor the clinical status of their patients and their adherence to therapy. During the test phase, 73% (16/22) of subjects entered all the required data regularly and sent feedback on drug intake. After 6 months of use, the percentage of regular intake of medications rose from 64% (14/22) to 82% (18/22). Analysis of the evaluation questionnaires showed that both the app and server components were well accepted by the users.</p><p><strong>Conclusions: </strong>Our study demonstrated that a simple mobile app, created to self-monitor modifiable cardiorenal risk factors and adherence to therapy, is well tolerated by patients affected by chronic kidney disease. Further studies are required to clarify if the use of this integrated system will have long-term effects on therapy adherence and if self-monitoring of risk factors will improve clinical outcomes in this population.</p>\",\"PeriodicalId\":73552,\"journal\":{\"name\":\"JMIR bioinformatics and biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135230/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR bioinformatics and biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/36766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR bioinformatics and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/36766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:慢性肾脏病是一个重大的公共卫生问题,约有 13% 的成年人和 30% 的老年人患有慢性肾脏病。处于这种疾病最后阶段的患者死亡和发生心血管事件的风险几乎是独一无二的高,而治疗依从性的降低则是心血管疾病发病率和死亡率的另一个风险因素。考虑到手机的普及率越来越高,一款手机应用可以教育患者自主监测心肾风险因素:考虑到这一背景,我们开发了一个由服务器和应用程序组成的集成系统,旨在改善心血管和肾脏风险因素的自我监测以及坚持治疗的情况:Smit-CKD 服务器和 Smit-CKD 应用程序的软件基础架构是采用标准的面向网络的开发方法开发的,在可用的情况下,我们更倾向于使用开源工具。为了使 Smit-CKD 应用程序适用于 Android 和 iOS,我们使用了允许从单一源代码开始开发多平台应用程序的平台。在 22 名参与者的帮助下,对集成系统进行了实地测试。用户满意度和治疗依从性通过专门为本研究设计的问卷进行测量;应用程序的定期使用通过平台上的每日报告进行测量:结果:Smit-CKD 应用程序可以监测心肾风险因素,如血压、体重和血糖。收集到的数据会实时传送给转诊的全科医生。此外,特别提醒功能还能提高药物治疗的依从性。通过 Smit-CKD 服务器,全科医生可以监控病人的临床状态及其坚持治疗的情况。在测试阶段,73% 的受试者(16/22)定期输入所有必要数据,并发送药物摄入反馈。使用 6 个月后,定期服药的比例从 64%(14/22)上升到 82%(18/22)。对评估问卷的分析表明,应用程序和服务器组件都得到了用户的广泛认可:我们的研究表明,慢性肾脏病患者对一款用于自我监测可改变的心肾风险因素和坚持治疗的简单移动应用程序的接受度很高。还需要进一步研究,以明确使用这一综合系统是否会对坚持治疗产生长期影响,以及自我监测风险因素是否会改善这一人群的临床疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring Risk Factors and Improving Adherence to Therapy in Patients With Chronic Kidney Disease (Smit-CKD Project): Pilot Observational Study.

Background: Chronic kidney disease is a major public health issue, with about 13% of the general adult population and 30% of the elderly affected. Patients in the last stage of this disease have an almost uniquely high risk of death and cardiovascular events, with reduced adherence to therapy representing an additional risk factor for cardiovascular morbidity and mortality. Considering the increased penetration of mobile phones, a mobile app could educate patients to autonomously monitor cardiorenal risk factors.

Objective: With this background in mind, we developed an integrated system of a server and app with the aim of improving self-monitoring of cardiovascular and renal risk factors and adherence to therapy.

Methods: The software infrastructure for both the Smit-CKD server and Smit-CKD app was developed using standard web-oriented development methodologies preferring open source tools when available. To make the Smit-CKD app suitable for Android and iOS, platforms that allow the development of a multiplatform app starting from a single source code were used. The integrated system was field tested with the help of 22 participants. User satisfaction and adherence to therapy were measured by questionnaires specifically designed for this study; regular use of the app was measured using the daily reports available on the platform.

Results: The Smit-CKD app allows the monitoring of cardiorenal risk factors, such as blood pressure, weight, and blood glucose. Collected data are transmitted in real time to the referring general practitioner. In addition, special reminders improve adherence to the medication regimen. Via the Smit-CKD server, general practitioners can monitor the clinical status of their patients and their adherence to therapy. During the test phase, 73% (16/22) of subjects entered all the required data regularly and sent feedback on drug intake. After 6 months of use, the percentage of regular intake of medications rose from 64% (14/22) to 82% (18/22). Analysis of the evaluation questionnaires showed that both the app and server components were well accepted by the users.

Conclusions: Our study demonstrated that a simple mobile app, created to self-monitor modifiable cardiorenal risk factors and adherence to therapy, is well tolerated by patients affected by chronic kidney disease. Further studies are required to clarify if the use of this integrated system will have long-term effects on therapy adherence and if self-monitoring of risk factors will improve clinical outcomes in this population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Ethical Considerations in Human-Centered AI: Advancing Oncology Chatbots Through Large Language Models. Enhancing Suicide Risk Prediction With Polygenic Scores in Psychiatric Emergency Settings: Prospective Study. Internet-Based Abnormal Chromosomal Diagnosis During Pregnancy Using a Noninvasive Innovative Approach to Detecting Chromosomal Abnormalities in the Fetus: Scoping Review. Comparison of the Neutralization Power of Sotrovimab Against SARS-CoV-2 Variants: Development of a Rapid Computational Method. Correction: Mutations of SARS-CoV-2 Structural Proteins in the Alpha, Beta, Gamma, and Delta Variants: Bioinformatics Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1