单位BurrⅢ分布的估计方法和偏差校正的最大似然估计

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2021-08-28 DOI:10.1080/01966324.2021.1963357
S. Dey, Liang Wang
{"title":"单位BurrⅢ分布的估计方法和偏差校正的最大似然估计","authors":"S. Dey, Liang Wang","doi":"10.1080/01966324.2021.1963357","DOIUrl":null,"url":null,"abstract":"Abstract In this article, various classical estimation methods are employed to estimate the parameters of unit Burr III distribution. Further, the associated second-order bias corrections of the MLEs of its parameters are obtained by using a modified bias-corrected approach. In addition, another parametric bootstrap bias correction method is also considered for model parameters. Extensive Monte-Carlo simulation studies are performed to evaluate different estimation methods in terms of their average biases and mean squared error, and the performance of these estimators are compared as well. Our results reveal that the bias corrections improve the accuracy of maximum likelihood estimates. Finally, one real data example is discussed to illustrate the applicability of the unit Burr III distribution.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"316 - 333"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methods of Estimation and Bias Corrected Maximum Likelihood Estimators of Unit Burr III Distribution\",\"authors\":\"S. Dey, Liang Wang\",\"doi\":\"10.1080/01966324.2021.1963357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, various classical estimation methods are employed to estimate the parameters of unit Burr III distribution. Further, the associated second-order bias corrections of the MLEs of its parameters are obtained by using a modified bias-corrected approach. In addition, another parametric bootstrap bias correction method is also considered for model parameters. Extensive Monte-Carlo simulation studies are performed to evaluate different estimation methods in terms of their average biases and mean squared error, and the performance of these estimators are compared as well. Our results reveal that the bias corrections improve the accuracy of maximum likelihood estimates. Finally, one real data example is discussed to illustrate the applicability of the unit Burr III distribution.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"41 1\",\"pages\":\"316 - 333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1963357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1963357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文采用各种经典的估计方法来估计单位BurrⅢ分布的参数。此外,通过使用改进的偏置校正方法来获得其参数的MLE的相关联的二阶偏置校正。此外,对模型参数还考虑了另一种参数自举偏差校正方法。进行了广泛的蒙特卡罗模拟研究,以评估不同的估计方法的平均偏差和均方误差,并比较了这些估计量的性能。我们的结果表明,偏差校正提高了最大似然估计的准确性。最后,通过一个实际数据实例说明了单位BurrⅢ分布的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods of Estimation and Bias Corrected Maximum Likelihood Estimators of Unit Burr III Distribution
Abstract In this article, various classical estimation methods are employed to estimate the parameters of unit Burr III distribution. Further, the associated second-order bias corrections of the MLEs of its parameters are obtained by using a modified bias-corrected approach. In addition, another parametric bootstrap bias correction method is also considered for model parameters. Extensive Monte-Carlo simulation studies are performed to evaluate different estimation methods in terms of their average biases and mean squared error, and the performance of these estimators are compared as well. Our results reveal that the bias corrections improve the accuracy of maximum likelihood estimates. Finally, one real data example is discussed to illustrate the applicability of the unit Burr III distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1