Xia Zhou, Wu-an Bao, Xiangyu Zhu, Juan Lin, Junzhao Fan, Yang Yang, Xiang-Hui Du, Yue Wang
{"title":"3,3 ' -二吲哚甲烷通过调节NF-κB/TGF-β/Smad信号通路减轻辐射性肺损伤的炎症和纤维化","authors":"Xia Zhou, Wu-an Bao, Xiangyu Zhu, Juan Lin, Junzhao Fan, Yang Yang, Xiang-Hui Du, Yue Wang","doi":"10.1080/01902148.2022.2052208","DOIUrl":null,"url":null,"abstract":"Abstract Objective: This study aims to investigate the protective effect of 3,3′-diindolylmethane (DIM) on the radiation-induced lung injury (RILI) model and to explore its possible mechanism. Methods: A mouse model of RILI was established by thoracic irradiation, and dexamethasone was used as a positive drug to investigate the effect of DIM on RILI mice. Lung histopathology was analyzed by HE staining and Masson staining. Then the levels of inflammatory cytokines (TGF-β, TNF-α, IL-1β, and IL-6), inflammatory cell counts, and activity of MPO were detected. The expression of TGFβ1/Smad signaling pathway-related proteins was determined by immunohistochemistry. qPCR was used to analyze the mRNA expression levels of inflammatory factors, α‑SMA and COL1A1. The expression of COX-2, NF-κB, IκBα, PI3K, and Akt proteins was assessed by Western blot. Results: Histopathological staining of lung tissues showed that DIM administration alleviated the pulmonary inflammation and fibrosis caused by RILI. Moreover, the content of inflammatory factors such as IL-1β and IL-6, the expression of NF-κB pathway-related proteins, and the counts of inflammatory cells were inhibited in lung tissue, indicating that DIM can inhibit the NF-κB pathway to reduce inflammation. In addition, DIM could down-regulate the mRNA levels of α-SMA, COL1A1, and downregulate TGFβ1, Smad3, and p-Smad2/3 in lung tissues. Conclusion: Our study confirms that DIM has the potential to treat RILI in vivo by inhibiting fibrotic and inflammatory responses in lung tissue through the TGFβ/Smad and NF-κB dual pathways, respectively. Graphic Abstract","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"48 1","pages":"103 - 113"},"PeriodicalIF":1.5000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3,3′-Diindolylmethane attenuates inflammation and fibrosis in radiation-induced lung injury by regulating NF-κB/TGF-β/Smad signaling pathways\",\"authors\":\"Xia Zhou, Wu-an Bao, Xiangyu Zhu, Juan Lin, Junzhao Fan, Yang Yang, Xiang-Hui Du, Yue Wang\",\"doi\":\"10.1080/01902148.2022.2052208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objective: This study aims to investigate the protective effect of 3,3′-diindolylmethane (DIM) on the radiation-induced lung injury (RILI) model and to explore its possible mechanism. Methods: A mouse model of RILI was established by thoracic irradiation, and dexamethasone was used as a positive drug to investigate the effect of DIM on RILI mice. Lung histopathology was analyzed by HE staining and Masson staining. Then the levels of inflammatory cytokines (TGF-β, TNF-α, IL-1β, and IL-6), inflammatory cell counts, and activity of MPO were detected. The expression of TGFβ1/Smad signaling pathway-related proteins was determined by immunohistochemistry. qPCR was used to analyze the mRNA expression levels of inflammatory factors, α‑SMA and COL1A1. The expression of COX-2, NF-κB, IκBα, PI3K, and Akt proteins was assessed by Western blot. Results: Histopathological staining of lung tissues showed that DIM administration alleviated the pulmonary inflammation and fibrosis caused by RILI. Moreover, the content of inflammatory factors such as IL-1β and IL-6, the expression of NF-κB pathway-related proteins, and the counts of inflammatory cells were inhibited in lung tissue, indicating that DIM can inhibit the NF-κB pathway to reduce inflammation. In addition, DIM could down-regulate the mRNA levels of α-SMA, COL1A1, and downregulate TGFβ1, Smad3, and p-Smad2/3 in lung tissues. Conclusion: Our study confirms that DIM has the potential to treat RILI in vivo by inhibiting fibrotic and inflammatory responses in lung tissue through the TGFβ/Smad and NF-κB dual pathways, respectively. Graphic Abstract\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\"48 1\",\"pages\":\"103 - 113\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2022.2052208\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2022.2052208","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
3,3′-Diindolylmethane attenuates inflammation and fibrosis in radiation-induced lung injury by regulating NF-κB/TGF-β/Smad signaling pathways
Abstract Objective: This study aims to investigate the protective effect of 3,3′-diindolylmethane (DIM) on the radiation-induced lung injury (RILI) model and to explore its possible mechanism. Methods: A mouse model of RILI was established by thoracic irradiation, and dexamethasone was used as a positive drug to investigate the effect of DIM on RILI mice. Lung histopathology was analyzed by HE staining and Masson staining. Then the levels of inflammatory cytokines (TGF-β, TNF-α, IL-1β, and IL-6), inflammatory cell counts, and activity of MPO were detected. The expression of TGFβ1/Smad signaling pathway-related proteins was determined by immunohistochemistry. qPCR was used to analyze the mRNA expression levels of inflammatory factors, α‑SMA and COL1A1. The expression of COX-2, NF-κB, IκBα, PI3K, and Akt proteins was assessed by Western blot. Results: Histopathological staining of lung tissues showed that DIM administration alleviated the pulmonary inflammation and fibrosis caused by RILI. Moreover, the content of inflammatory factors such as IL-1β and IL-6, the expression of NF-κB pathway-related proteins, and the counts of inflammatory cells were inhibited in lung tissue, indicating that DIM can inhibit the NF-κB pathway to reduce inflammation. In addition, DIM could down-regulate the mRNA levels of α-SMA, COL1A1, and downregulate TGFβ1, Smad3, and p-Smad2/3 in lung tissues. Conclusion: Our study confirms that DIM has the potential to treat RILI in vivo by inhibiting fibrotic and inflammatory responses in lung tissue through the TGFβ/Smad and NF-κB dual pathways, respectively. Graphic Abstract
期刊介绍:
Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia.
Authors can choose to publish gold open access in this journal.