{"title":"用于番茄成熟度自动分级的CNN-ELM分类模型","authors":"J. P. T. Yusiong","doi":"10.5614/itbj.ict.res.appl.2022.16.1.2","DOIUrl":null,"url":null,"abstract":"Tomatoes are popular around the world due to their high nutritional value. Tomatoes are also one of the world’s most widely cultivated and profitable crops. The distribution and marketing of tomatoes depend highly on their quality. Estimating tomato ripeness is an essential step in determining shelf life and quality. With the abundant supply of tomatoes on the market, it is exceedingly difficult to estimate tomato ripeness using human graders. To address this issue and improve tomato quality inspection and sorting, automated tomato maturity classification models based on different features have been developed. However, current methods heavily rely on human-engineered or handcrafted features. Convolutional neural networks have emerged as the preferred technique for general object recognition problems because they can automatically detect and extract valuable features by directly working on input images. This paper proposes a CNN-ELM classification model for automated tomato maturity grading that combines CNNs’ automated feature learning capabilities with the efficiency of extreme learning machines to perform fast and accurate classification even with limited training data. The results showed that the proposed CNN-ELM model had a classification accuracy of 96.67% and an F1-score of 96.67% in identifying six maturity stages from the test data.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A CNN-ELM Classification Model for Automated Tomato Maturity Grading\",\"authors\":\"J. P. T. Yusiong\",\"doi\":\"10.5614/itbj.ict.res.appl.2022.16.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tomatoes are popular around the world due to their high nutritional value. Tomatoes are also one of the world’s most widely cultivated and profitable crops. The distribution and marketing of tomatoes depend highly on their quality. Estimating tomato ripeness is an essential step in determining shelf life and quality. With the abundant supply of tomatoes on the market, it is exceedingly difficult to estimate tomato ripeness using human graders. To address this issue and improve tomato quality inspection and sorting, automated tomato maturity classification models based on different features have been developed. However, current methods heavily rely on human-engineered or handcrafted features. Convolutional neural networks have emerged as the preferred technique for general object recognition problems because they can automatically detect and extract valuable features by directly working on input images. This paper proposes a CNN-ELM classification model for automated tomato maturity grading that combines CNNs’ automated feature learning capabilities with the efficiency of extreme learning machines to perform fast and accurate classification even with limited training data. The results showed that the proposed CNN-ELM model had a classification accuracy of 96.67% and an F1-score of 96.67% in identifying six maturity stages from the test data.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A CNN-ELM Classification Model for Automated Tomato Maturity Grading
Tomatoes are popular around the world due to their high nutritional value. Tomatoes are also one of the world’s most widely cultivated and profitable crops. The distribution and marketing of tomatoes depend highly on their quality. Estimating tomato ripeness is an essential step in determining shelf life and quality. With the abundant supply of tomatoes on the market, it is exceedingly difficult to estimate tomato ripeness using human graders. To address this issue and improve tomato quality inspection and sorting, automated tomato maturity classification models based on different features have been developed. However, current methods heavily rely on human-engineered or handcrafted features. Convolutional neural networks have emerged as the preferred technique for general object recognition problems because they can automatically detect and extract valuable features by directly working on input images. This paper proposes a CNN-ELM classification model for automated tomato maturity grading that combines CNNs’ automated feature learning capabilities with the efficiency of extreme learning machines to perform fast and accurate classification even with limited training data. The results showed that the proposed CNN-ELM model had a classification accuracy of 96.67% and an F1-score of 96.67% in identifying six maturity stages from the test data.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.