{"title":"聚合物降解。微塑料","authors":"M. Mucha, J. Mucha","doi":"10.14314/polimery.2022.7.1","DOIUrl":null,"url":null,"abstract":"The process of semicrystalline polymers thermo-oxidative degradation was analyzed on the example of isotactic polypropylene (iPP). Oxygen degradation takes place mainly in the amorphous phase into which oxygen diffuses. This leads to oxidation (formation of hydroperoxides) and next the chains scission. The polymer becomes brittle and breaks down into small pieces (e.g. microplastics). The crystalline phase is more difficult to access for oxygen that initiates the thermo-oxidation process. An increase in the crystallinity degree and a decrease in the viscosity of the solutions diluted in p-xylene as a function of the degradation time were observed. The number of iPP chain scission (change in molecular weight) as a function of degradation time was also calculated. These values depend on the polymer initial crystallinity degree and its supermolecular structure.","PeriodicalId":20319,"journal":{"name":"Polimery","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymers degradation – microplastic\",\"authors\":\"M. Mucha, J. Mucha\",\"doi\":\"10.14314/polimery.2022.7.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of semicrystalline polymers thermo-oxidative degradation was analyzed on the example of isotactic polypropylene (iPP). Oxygen degradation takes place mainly in the amorphous phase into which oxygen diffuses. This leads to oxidation (formation of hydroperoxides) and next the chains scission. The polymer becomes brittle and breaks down into small pieces (e.g. microplastics). The crystalline phase is more difficult to access for oxygen that initiates the thermo-oxidation process. An increase in the crystallinity degree and a decrease in the viscosity of the solutions diluted in p-xylene as a function of the degradation time were observed. The number of iPP chain scission (change in molecular weight) as a function of degradation time was also calculated. These values depend on the polymer initial crystallinity degree and its supermolecular structure.\",\"PeriodicalId\":20319,\"journal\":{\"name\":\"Polimery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.14314/polimery.2022.7.1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.14314/polimery.2022.7.1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
The process of semicrystalline polymers thermo-oxidative degradation was analyzed on the example of isotactic polypropylene (iPP). Oxygen degradation takes place mainly in the amorphous phase into which oxygen diffuses. This leads to oxidation (formation of hydroperoxides) and next the chains scission. The polymer becomes brittle and breaks down into small pieces (e.g. microplastics). The crystalline phase is more difficult to access for oxygen that initiates the thermo-oxidation process. An increase in the crystallinity degree and a decrease in the viscosity of the solutions diluted in p-xylene as a function of the degradation time were observed. The number of iPP chain scission (change in molecular weight) as a function of degradation time was also calculated. These values depend on the polymer initial crystallinity degree and its supermolecular structure.
期刊介绍:
The "Polimery" journal, of international circulation, is publishing peerreviewed scientific and technical research papers covering polymer science and technology in the field of polymers, rubbers, chemical fibres and paints. The range of topics covered are raw materials, polymer synthesis, processing and applications of polymers. Apart from scientific and technical research papers the monthly includes technical and commercial information such as reports from fairs and exhibitions as well as home, world and technical news.
“Polimery "- an international journal covering the following topics: polymers, rubber, chemical fibres and paints.
The Journal is addressed to scientists, managers and engineering staff of universities, Polish Academy of Sciences, R&D institutions, industry, specializing in polymer chemistry, physical chemistry, technology and processing. “Polimery” publishes original, reviewed research, scientific and technology papers in the field of polymer synthesis, analysis, technology and modification, processing, properties, applications and recycling.