{"title":"初椰油补充饮食对苯甲酸钠诱导的乙酰胆碱酯酶功能障碍和认知障碍的神经保护作用:Nrf2/NfKb信号通路的作用","authors":"Abraham Asuku","doi":"10.54548/njps.v37i2.10","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of virgin coconut oil (VCO) supplemented diet on sodium benzoate (SB) - induced neurotoxicity in male Wistar rats was investigated. Twenty (20) male Wistar rats weighing 160-180g were divided into four (4) groups: Control which received 1ml of normal saline, SB-treated; received 200 mg/kg b.w, SB + Low Dose VCO-treated (SB + 5% VCO mixed with 95g of rat chow), and SB + High Dose VCO-treated (SB+ 15% VCO mixed with 85g of rat chow). The brain was processed for NRF-2, NF-kB, and acetylcholine esterase (AchE) gene expression levels. Also, the blood sample was processed for assessment of superoxide dismutase (SOD), catalase (CAT), and IL1B levels. One-way ANOVA and Tukey post hoc tests were used to analyze data. SB-treated rats with no intervention showed anxiety-like behavior and impaired memory as depicted by a significant (p<0.0001) increase in anxiety index, increase in brain NF-KB, increase in serum IL1B and increase in AchE gene expression level, reduction in the recognition ratio, decreased spontaneous alternation performance, decreased CAT and SOD levels and decreased NRF-2 expression level when compared to other groups (especially control and SB + 5% VCO). VCO supplemented diet (both 5% and 15%) significantly (p<0.0001) increased the CAT and SOD levels, increased the NRF-2 gene expression level, and significantly (p <0.0001) decreased the IL1-B level. Moreover, 5% VCO significantly (p<0.0001) decreased the anxiety index, decreased AchE and NFkB gene expression levels, increased spontaneous alternation performance, and increased recognition ratio compared to 15% VCO. VCO shows a neuroprotective effect in attenuating cognitive impairment and anxiety-like behavior in SB-induced model by modulating oxidative stress and inflammatory pathways, and also enhancing cholinergic neurotransmission. Keywords: Virgin coconut oil; sodium benzoate; acetylcholinesterase; catalase; superoxide dismutase; oxidative stress.</p>","PeriodicalId":35043,"journal":{"name":"Nigerian Journal of Physiological Sciences","volume":" ","pages":"225-233"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective Effects of Virgin Coconut Oil Supplemented Diet against Sodium Benzoate-induced Acetylcholinesterase Dysfunction and Cognitive Impairment: Role of Nrf2/NfKb Signaling Pathway.\",\"authors\":\"Abraham Asuku\",\"doi\":\"10.54548/njps.v37i2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effect of virgin coconut oil (VCO) supplemented diet on sodium benzoate (SB) - induced neurotoxicity in male Wistar rats was investigated. Twenty (20) male Wistar rats weighing 160-180g were divided into four (4) groups: Control which received 1ml of normal saline, SB-treated; received 200 mg/kg b.w, SB + Low Dose VCO-treated (SB + 5% VCO mixed with 95g of rat chow), and SB + High Dose VCO-treated (SB+ 15% VCO mixed with 85g of rat chow). The brain was processed for NRF-2, NF-kB, and acetylcholine esterase (AchE) gene expression levels. Also, the blood sample was processed for assessment of superoxide dismutase (SOD), catalase (CAT), and IL1B levels. One-way ANOVA and Tukey post hoc tests were used to analyze data. SB-treated rats with no intervention showed anxiety-like behavior and impaired memory as depicted by a significant (p<0.0001) increase in anxiety index, increase in brain NF-KB, increase in serum IL1B and increase in AchE gene expression level, reduction in the recognition ratio, decreased spontaneous alternation performance, decreased CAT and SOD levels and decreased NRF-2 expression level when compared to other groups (especially control and SB + 5% VCO). VCO supplemented diet (both 5% and 15%) significantly (p<0.0001) increased the CAT and SOD levels, increased the NRF-2 gene expression level, and significantly (p <0.0001) decreased the IL1-B level. Moreover, 5% VCO significantly (p<0.0001) decreased the anxiety index, decreased AchE and NFkB gene expression levels, increased spontaneous alternation performance, and increased recognition ratio compared to 15% VCO. VCO shows a neuroprotective effect in attenuating cognitive impairment and anxiety-like behavior in SB-induced model by modulating oxidative stress and inflammatory pathways, and also enhancing cholinergic neurotransmission. Keywords: Virgin coconut oil; sodium benzoate; acetylcholinesterase; catalase; superoxide dismutase; oxidative stress.</p>\",\"PeriodicalId\":35043,\"journal\":{\"name\":\"Nigerian Journal of Physiological Sciences\",\"volume\":\" \",\"pages\":\"225-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nigerian Journal of Physiological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54548/njps.v37i2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Physiological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54548/njps.v37i2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Neuroprotective Effects of Virgin Coconut Oil Supplemented Diet against Sodium Benzoate-induced Acetylcholinesterase Dysfunction and Cognitive Impairment: Role of Nrf2/NfKb Signaling Pathway.
The effect of virgin coconut oil (VCO) supplemented diet on sodium benzoate (SB) - induced neurotoxicity in male Wistar rats was investigated. Twenty (20) male Wistar rats weighing 160-180g were divided into four (4) groups: Control which received 1ml of normal saline, SB-treated; received 200 mg/kg b.w, SB + Low Dose VCO-treated (SB + 5% VCO mixed with 95g of rat chow), and SB + High Dose VCO-treated (SB+ 15% VCO mixed with 85g of rat chow). The brain was processed for NRF-2, NF-kB, and acetylcholine esterase (AchE) gene expression levels. Also, the blood sample was processed for assessment of superoxide dismutase (SOD), catalase (CAT), and IL1B levels. One-way ANOVA and Tukey post hoc tests were used to analyze data. SB-treated rats with no intervention showed anxiety-like behavior and impaired memory as depicted by a significant (p<0.0001) increase in anxiety index, increase in brain NF-KB, increase in serum IL1B and increase in AchE gene expression level, reduction in the recognition ratio, decreased spontaneous alternation performance, decreased CAT and SOD levels and decreased NRF-2 expression level when compared to other groups (especially control and SB + 5% VCO). VCO supplemented diet (both 5% and 15%) significantly (p<0.0001) increased the CAT and SOD levels, increased the NRF-2 gene expression level, and significantly (p <0.0001) decreased the IL1-B level. Moreover, 5% VCO significantly (p<0.0001) decreased the anxiety index, decreased AchE and NFkB gene expression levels, increased spontaneous alternation performance, and increased recognition ratio compared to 15% VCO. VCO shows a neuroprotective effect in attenuating cognitive impairment and anxiety-like behavior in SB-induced model by modulating oxidative stress and inflammatory pathways, and also enhancing cholinergic neurotransmission. Keywords: Virgin coconut oil; sodium benzoate; acetylcholinesterase; catalase; superoxide dismutase; oxidative stress.