{"title":"低温种子存活:气候变化下影响高海拔地区群落水平变化的潜在选择因子","authors":"G. Jaganathan, S. Dalrymple, H. Pritchard","doi":"10.1080/07352689.2020.1848277","DOIUrl":null,"url":null,"abstract":"Abstract In alpine ecosystems, imbibed seeds are often exposed to temperatures as low as −35 °C, challenging their survival in the soil. Here, we show that seeds have mechanisms to survive cold climate prevalent in alpine ecosystems and have identified three such mechanisms from existing literature, including two forms of freezing avoidance (the presence of water impermeable seed coats, and the supercooling of seed tissues) and one form of freezing tolerance (by extracellular-freezing). Experimentally-derived published data on the lowest temperature recorded at which 50% of a seed sample survived (i.e., lethal temperature; LT50) was used to generate a dataset of 24 species across low altitude, boreal and alpine environments. We assumed that the ability of seeds to maintain viability at very low temperatures would increase in species associated with higher altitudes conferring a competitive advantage that would be lost under projected climate change. However, our results reveal to underpin that seeds from boreal species survive relatively better at lower temperatures than those of alpine species. Paradoxically, a warming climate could lead to alpine seed death due to extremes of cold at the soil surface resulting from snow cover loss, whilst the declining snow cover may facilitate boreal forest colonization above the current treeline.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"39 1","pages":"479 - 492"},"PeriodicalIF":6.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2020.1848277","citationCount":"5","resultStr":"{\"title\":\"Seed Survival at Low Temperatures: A Potential Selecting Factor Influencing Community Level Changes in High Altitudes under Climate Change\",\"authors\":\"G. Jaganathan, S. Dalrymple, H. Pritchard\",\"doi\":\"10.1080/07352689.2020.1848277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In alpine ecosystems, imbibed seeds are often exposed to temperatures as low as −35 °C, challenging their survival in the soil. Here, we show that seeds have mechanisms to survive cold climate prevalent in alpine ecosystems and have identified three such mechanisms from existing literature, including two forms of freezing avoidance (the presence of water impermeable seed coats, and the supercooling of seed tissues) and one form of freezing tolerance (by extracellular-freezing). Experimentally-derived published data on the lowest temperature recorded at which 50% of a seed sample survived (i.e., lethal temperature; LT50) was used to generate a dataset of 24 species across low altitude, boreal and alpine environments. We assumed that the ability of seeds to maintain viability at very low temperatures would increase in species associated with higher altitudes conferring a competitive advantage that would be lost under projected climate change. However, our results reveal to underpin that seeds from boreal species survive relatively better at lower temperatures than those of alpine species. Paradoxically, a warming climate could lead to alpine seed death due to extremes of cold at the soil surface resulting from snow cover loss, whilst the declining snow cover may facilitate boreal forest colonization above the current treeline.\",\"PeriodicalId\":10854,\"journal\":{\"name\":\"Critical Reviews in Plant Sciences\",\"volume\":\"39 1\",\"pages\":\"479 - 492\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07352689.2020.1848277\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07352689.2020.1848277\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2020.1848277","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Seed Survival at Low Temperatures: A Potential Selecting Factor Influencing Community Level Changes in High Altitudes under Climate Change
Abstract In alpine ecosystems, imbibed seeds are often exposed to temperatures as low as −35 °C, challenging their survival in the soil. Here, we show that seeds have mechanisms to survive cold climate prevalent in alpine ecosystems and have identified three such mechanisms from existing literature, including two forms of freezing avoidance (the presence of water impermeable seed coats, and the supercooling of seed tissues) and one form of freezing tolerance (by extracellular-freezing). Experimentally-derived published data on the lowest temperature recorded at which 50% of a seed sample survived (i.e., lethal temperature; LT50) was used to generate a dataset of 24 species across low altitude, boreal and alpine environments. We assumed that the ability of seeds to maintain viability at very low temperatures would increase in species associated with higher altitudes conferring a competitive advantage that would be lost under projected climate change. However, our results reveal to underpin that seeds from boreal species survive relatively better at lower temperatures than those of alpine species. Paradoxically, a warming climate could lead to alpine seed death due to extremes of cold at the soil surface resulting from snow cover loss, whilst the declining snow cover may facilitate boreal forest colonization above the current treeline.
期刊介绍:
Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.