Taisheng Chen, Menglin Chen, A. Zhu, Weixing Jiang
{"title":"一种基于学习的自动评估地图顺序配色方案质量的方法","authors":"Taisheng Chen, Menglin Chen, A. Zhu, Weixing Jiang","doi":"10.1080/15230406.2021.1936184","DOIUrl":null,"url":null,"abstract":"ABSTRACT Color quality evaluation is key to judging map quality, which can improve data visualization and communication. However, most existing methods for evaluating map colors are tedious and subjective manual methods. In this paper, we study sequential color schemes, a widely used map color type and propose a learning-based approach for evaluating the color quality. The approach consists of two steps. First, we extract and characterize the cartographic factors for determining the quality of sequential color schemes, such as color order, color match, color harmony, color discrimination and color uniformity. Second, we present a model to predict the color quality based on AdaBoost, a type of ensemble learning algorithm with excellent classification performance and use these factors as input data. We conduct a case study based on 781 samples and train the AdaBoost-based model to predict the quality of sequential color schemes. To evaluate the model’s performance, we calculated the area under the receiver operating characteristic (ROC) curve (AUC). The AUC values are 0.983 and 0.977 on the training data and testing data, respectively. These results indicate that the proposed approach can be used to automatically evaluate the quality of sequential color schemes for maps, which helps mapmakers select good colors.","PeriodicalId":47562,"journal":{"name":"Cartography and Geographic Information Science","volume":"48 1","pages":"377 - 392"},"PeriodicalIF":2.6000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15230406.2021.1936184","citationCount":"4","resultStr":"{\"title\":\"A learning-based approach to automatically evaluate the quality of sequential color schemes for maps\",\"authors\":\"Taisheng Chen, Menglin Chen, A. Zhu, Weixing Jiang\",\"doi\":\"10.1080/15230406.2021.1936184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Color quality evaluation is key to judging map quality, which can improve data visualization and communication. However, most existing methods for evaluating map colors are tedious and subjective manual methods. In this paper, we study sequential color schemes, a widely used map color type and propose a learning-based approach for evaluating the color quality. The approach consists of two steps. First, we extract and characterize the cartographic factors for determining the quality of sequential color schemes, such as color order, color match, color harmony, color discrimination and color uniformity. Second, we present a model to predict the color quality based on AdaBoost, a type of ensemble learning algorithm with excellent classification performance and use these factors as input data. We conduct a case study based on 781 samples and train the AdaBoost-based model to predict the quality of sequential color schemes. To evaluate the model’s performance, we calculated the area under the receiver operating characteristic (ROC) curve (AUC). The AUC values are 0.983 and 0.977 on the training data and testing data, respectively. These results indicate that the proposed approach can be used to automatically evaluate the quality of sequential color schemes for maps, which helps mapmakers select good colors.\",\"PeriodicalId\":47562,\"journal\":{\"name\":\"Cartography and Geographic Information Science\",\"volume\":\"48 1\",\"pages\":\"377 - 392\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15230406.2021.1936184\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cartography and Geographic Information Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15230406.2021.1936184\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cartography and Geographic Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15230406.2021.1936184","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
A learning-based approach to automatically evaluate the quality of sequential color schemes for maps
ABSTRACT Color quality evaluation is key to judging map quality, which can improve data visualization and communication. However, most existing methods for evaluating map colors are tedious and subjective manual methods. In this paper, we study sequential color schemes, a widely used map color type and propose a learning-based approach for evaluating the color quality. The approach consists of two steps. First, we extract and characterize the cartographic factors for determining the quality of sequential color schemes, such as color order, color match, color harmony, color discrimination and color uniformity. Second, we present a model to predict the color quality based on AdaBoost, a type of ensemble learning algorithm with excellent classification performance and use these factors as input data. We conduct a case study based on 781 samples and train the AdaBoost-based model to predict the quality of sequential color schemes. To evaluate the model’s performance, we calculated the area under the receiver operating characteristic (ROC) curve (AUC). The AUC values are 0.983 and 0.977 on the training data and testing data, respectively. These results indicate that the proposed approach can be used to automatically evaluate the quality of sequential color schemes for maps, which helps mapmakers select good colors.
期刊介绍:
Cartography and Geographic Information Science (CaGIS) is the official publication of the Cartography and Geographic Information Society (CaGIS), a member organization of the American Congress on Surveying and Mapping (ACSM). The Cartography and Geographic Information Society supports research, education, and practices that improve the understanding, creation, analysis, and use of maps and geographic information. The society serves as a forum for the exchange of original concepts, techniques, approaches, and experiences by those who design, implement, and use geospatial technologies through the publication of authoritative articles and international papers.