明天会有多少次强烈地震?

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Frontiers in Applied Mathematics and Statistics Pub Date : 2023-07-05 DOI:10.3389/fams.2023.1152476
M. Taroni, I. Spassiani, N. Laskin, S. Barani
{"title":"明天会有多少次强烈地震?","authors":"M. Taroni, I. Spassiani, N. Laskin, S. Barani","doi":"10.3389/fams.2023.1152476","DOIUrl":null,"url":null,"abstract":"In this note, we study the distribution of earthquake numbers in both worldwide and regional catalogs: in the Global Centroid Moment Tensor catalog, from 1980 to 2019 for magnitudes Mw 5. 5+ and 6.5+ in the first case, and in the Italian instrumental catalog from 1960 to 2021 for magnitudes Mw 4.0+ and 5.5+ in the second case. A subset of the global catalog is also used to study the Japanese region. We will focus our attention on short-term time windows of 1, 7, and 30 days, which have been poorly explored in previous studies. We model the earthquake numbers using two discrete probability distributions, i.e., Poisson and Negative Binomial. Using the classical chi-squared statistical test, we found that the Poisson distribution, widely used in seismological studies, is always rejected when tested against observations, while the Negative Binomial distribution cannot be disproved for magnitudes Mw 6.5+ in all time windows of the global catalog. However, if we consider the Japanese or the Italian regions, it cannot be proven that the Negative Binomial distribution performs better than the Poisson distribution using the chi-squared test. When instead we compared the performances of the two distributions using the Akaike Information Criterion, we found that the Negative Binomial distribution always performs better than the Poisson one. The results of this study suggest that the Negative Binomial distribution, largely ignored in seismological studies, should replace the Poisson distribution in modeling the number of earthquakes.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How many strong earthquakes will there be tomorrow?\",\"authors\":\"M. Taroni, I. Spassiani, N. Laskin, S. Barani\",\"doi\":\"10.3389/fams.2023.1152476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we study the distribution of earthquake numbers in both worldwide and regional catalogs: in the Global Centroid Moment Tensor catalog, from 1980 to 2019 for magnitudes Mw 5. 5+ and 6.5+ in the first case, and in the Italian instrumental catalog from 1960 to 2021 for magnitudes Mw 4.0+ and 5.5+ in the second case. A subset of the global catalog is also used to study the Japanese region. We will focus our attention on short-term time windows of 1, 7, and 30 days, which have been poorly explored in previous studies. We model the earthquake numbers using two discrete probability distributions, i.e., Poisson and Negative Binomial. Using the classical chi-squared statistical test, we found that the Poisson distribution, widely used in seismological studies, is always rejected when tested against observations, while the Negative Binomial distribution cannot be disproved for magnitudes Mw 6.5+ in all time windows of the global catalog. However, if we consider the Japanese or the Italian regions, it cannot be proven that the Negative Binomial distribution performs better than the Poisson distribution using the chi-squared test. When instead we compared the performances of the two distributions using the Akaike Information Criterion, we found that the Negative Binomial distribution always performs better than the Poisson one. The results of this study suggest that the Negative Binomial distribution, largely ignored in seismological studies, should replace the Poisson distribution in modeling the number of earthquakes.\",\"PeriodicalId\":36662,\"journal\":{\"name\":\"Frontiers in Applied Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fams.2023.1152476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1152476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了全球和区域目录中地震次数的分布:在全球质心矩张量目录中,从1980年到2019年,震级为m5。第一种情况是5+和6.5+,第二种情况是1960年至2021年意大利仪器目录中的Mw 4.0+和5.5+。全球目录的一个子集也用于研究日本地区。我们将把注意力集中在1、7和30天的短期时间窗口上,这在以前的研究中没有得到很好的探索。我们用两个离散概率分布,即泊松分布和负二项分布来模拟地震数。使用经典的卡方统计检验,我们发现在地震学研究中广泛使用的泊松分布在与观测数据进行检验时总是被拒绝,而负二项分布在全球目录的所有时间窗口中都不能被否定。但是,如果我们考虑日本或意大利地区,则无法使用卡方检验证明负二项分布优于泊松分布。当我们使用赤池信息准则比较两种分布的性能时,我们发现负二项分布总是比泊松分布表现得更好。本研究的结果表明,负二项分布在地震研究中很大程度上被忽视,应该取代泊松分布来模拟地震次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How many strong earthquakes will there be tomorrow?
In this note, we study the distribution of earthquake numbers in both worldwide and regional catalogs: in the Global Centroid Moment Tensor catalog, from 1980 to 2019 for magnitudes Mw 5. 5+ and 6.5+ in the first case, and in the Italian instrumental catalog from 1960 to 2021 for magnitudes Mw 4.0+ and 5.5+ in the second case. A subset of the global catalog is also used to study the Japanese region. We will focus our attention on short-term time windows of 1, 7, and 30 days, which have been poorly explored in previous studies. We model the earthquake numbers using two discrete probability distributions, i.e., Poisson and Negative Binomial. Using the classical chi-squared statistical test, we found that the Poisson distribution, widely used in seismological studies, is always rejected when tested against observations, while the Negative Binomial distribution cannot be disproved for magnitudes Mw 6.5+ in all time windows of the global catalog. However, if we consider the Japanese or the Italian regions, it cannot be proven that the Negative Binomial distribution performs better than the Poisson distribution using the chi-squared test. When instead we compared the performances of the two distributions using the Akaike Information Criterion, we found that the Negative Binomial distribution always performs better than the Poisson one. The results of this study suggest that the Negative Binomial distribution, largely ignored in seismological studies, should replace the Poisson distribution in modeling the number of earthquakes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
期刊最新文献
Third-degree B-spline collocation method for singularly perturbed time delay parabolic problem with two parameters Item response theory to discriminate COVID-19 knowledge and attitudes among university students Editorial: Justified modeling frameworks and novel interpretations of ecological and epidemiological systems Pneumonia and COVID-19 co-infection modeling with optimal control analysis Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1