Sundas Tanveer, N. Ilyas, N. Akhtar, R. Sayyed, W. Almalki
{"title":"植物生长促进菌在干旱胁迫下对作物调控机制的诱导","authors":"Sundas Tanveer, N. Ilyas, N. Akhtar, R. Sayyed, W. Almalki","doi":"10.1071/CP22263","DOIUrl":null,"url":null,"abstract":"ABSTRACT Climate change and global warming are leading to severe drought stress, causing damage to crops in different regions of the world. Drought stress is an abiotic stress that interferes with major metabolic pathways, influencing mainly morphological, physiological and biochemical parameters of plants, ultimately resulting in decreased growth and yield of crops. Plants should be able to utilise available moisture efficiently, and there is a need to focus on organic and eco-friendly methods for improving crops facing drought stress. A practical approach for enhancing growth and development under stressful conditions is the application of plant growth promoting rhizobacteria (PGPR), soil microbes that help plants to cope with extreme ecological conditions. This review aims to highlight the function of various PGPR metabolites that help to mitigate water-deficit conditions. These microbes exist naturally in the rhizosphere of plants, and they enhance plant growth by several direct mechanisms such as aminocyclopropane-1-carboxylate deaminase and osmolyte production, secretion of exopolysaccharides and phytohormones, triggering of antioxidant defence mechanisms against reactive oxygen species and production of volatile organic compounds, as well as by indirect mechanisms including enhancing induced systemic resistance and pathogen suppression. This review recommends the use of PGPR for improving growth and development of crops under drought stress and supports their role as effective and sustainable bioinoculants for enhancing the growth and production of crops.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":"74 1","pages":"856 - 870"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of regulatory mechanisms by plant growth promoting rhizobacteria in crops facing drought stress\",\"authors\":\"Sundas Tanveer, N. Ilyas, N. Akhtar, R. Sayyed, W. Almalki\",\"doi\":\"10.1071/CP22263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Climate change and global warming are leading to severe drought stress, causing damage to crops in different regions of the world. Drought stress is an abiotic stress that interferes with major metabolic pathways, influencing mainly morphological, physiological and biochemical parameters of plants, ultimately resulting in decreased growth and yield of crops. Plants should be able to utilise available moisture efficiently, and there is a need to focus on organic and eco-friendly methods for improving crops facing drought stress. A practical approach for enhancing growth and development under stressful conditions is the application of plant growth promoting rhizobacteria (PGPR), soil microbes that help plants to cope with extreme ecological conditions. This review aims to highlight the function of various PGPR metabolites that help to mitigate water-deficit conditions. These microbes exist naturally in the rhizosphere of plants, and they enhance plant growth by several direct mechanisms such as aminocyclopropane-1-carboxylate deaminase and osmolyte production, secretion of exopolysaccharides and phytohormones, triggering of antioxidant defence mechanisms against reactive oxygen species and production of volatile organic compounds, as well as by indirect mechanisms including enhancing induced systemic resistance and pathogen suppression. This review recommends the use of PGPR for improving growth and development of crops under drought stress and supports their role as effective and sustainable bioinoculants for enhancing the growth and production of crops.\",\"PeriodicalId\":51237,\"journal\":{\"name\":\"Crop & Pasture Science\",\"volume\":\"74 1\",\"pages\":\"856 - 870\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop & Pasture Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/CP22263\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/CP22263","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Induction of regulatory mechanisms by plant growth promoting rhizobacteria in crops facing drought stress
ABSTRACT Climate change and global warming are leading to severe drought stress, causing damage to crops in different regions of the world. Drought stress is an abiotic stress that interferes with major metabolic pathways, influencing mainly morphological, physiological and biochemical parameters of plants, ultimately resulting in decreased growth and yield of crops. Plants should be able to utilise available moisture efficiently, and there is a need to focus on organic and eco-friendly methods for improving crops facing drought stress. A practical approach for enhancing growth and development under stressful conditions is the application of plant growth promoting rhizobacteria (PGPR), soil microbes that help plants to cope with extreme ecological conditions. This review aims to highlight the function of various PGPR metabolites that help to mitigate water-deficit conditions. These microbes exist naturally in the rhizosphere of plants, and they enhance plant growth by several direct mechanisms such as aminocyclopropane-1-carboxylate deaminase and osmolyte production, secretion of exopolysaccharides and phytohormones, triggering of antioxidant defence mechanisms against reactive oxygen species and production of volatile organic compounds, as well as by indirect mechanisms including enhancing induced systemic resistance and pathogen suppression. This review recommends the use of PGPR for improving growth and development of crops under drought stress and supports their role as effective and sustainable bioinoculants for enhancing the growth and production of crops.
期刊介绍:
Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture.
Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production.
Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.