基于径向基函数神经网络的无线传感器网络能量约束目标定位方案

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Distributed Sensor Networks Pub Date : 2023-03-30 DOI:10.1155/2023/1426430
V. Krishnamoorthy, Usha Nandini Duraisamy, Amruta S. Jondhale, Jaime Lloret, Balaji Venkatesalu Ramasamy
{"title":"基于径向基函数神经网络的无线传感器网络能量约束目标定位方案","authors":"V. Krishnamoorthy, Usha Nandini Duraisamy, Amruta S. Jondhale, Jaime Lloret, Balaji Venkatesalu Ramasamy","doi":"10.1155/2023/1426430","DOIUrl":null,"url":null,"abstract":"The indoor object tracking by utilizing received signal strength indicator (RSSI) measurements with the help of wireless sensor network (WSN) is an interesting and important topic in the domain of location-based applications. Without the knowledge of location, the measurements obtained with WSN are of no use. The trilateration is a widely used technique to get location updates of target based on RSSI measurements from WSN. However, it suffers with high location estimation errors arising due to random variations in RSSI measurements. This paper presents a range-free radial basis function neural network (RBFN) and Kalman filtering- (KF-) based algorithm named RBFN+KF. The performance of the RBFN+KF algorithm is evaluated using simulated RSSIs and is compared against trilateration, multilayer perceptron (MLP), and RBFN-based estimations. The simulation results reveal that the proposed RBFN+KF algorithm shows very low location estimation errors compared to the rest of the three approaches. Additionally, it is also seen that RBFN-based approach is more energy efficient than trilateration and MLP-based localization approaches.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy-Constrained Target Localization Scheme for Wireless Sensor Networks Using Radial Basis Function Neural Network\",\"authors\":\"V. Krishnamoorthy, Usha Nandini Duraisamy, Amruta S. Jondhale, Jaime Lloret, Balaji Venkatesalu Ramasamy\",\"doi\":\"10.1155/2023/1426430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The indoor object tracking by utilizing received signal strength indicator (RSSI) measurements with the help of wireless sensor network (WSN) is an interesting and important topic in the domain of location-based applications. Without the knowledge of location, the measurements obtained with WSN are of no use. The trilateration is a widely used technique to get location updates of target based on RSSI measurements from WSN. However, it suffers with high location estimation errors arising due to random variations in RSSI measurements. This paper presents a range-free radial basis function neural network (RBFN) and Kalman filtering- (KF-) based algorithm named RBFN+KF. The performance of the RBFN+KF algorithm is evaluated using simulated RSSIs and is compared against trilateration, multilayer perceptron (MLP), and RBFN-based estimations. The simulation results reveal that the proposed RBFN+KF algorithm shows very low location estimation errors compared to the rest of the three approaches. Additionally, it is also seen that RBFN-based approach is more energy efficient than trilateration and MLP-based localization approaches.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1426430\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/1426430","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在无线传感器网络(WSN)的帮助下,利用接收信号强度指标(RSSI)测量来跟踪室内物体是基于位置的应用领域中一个有趣而重要的话题。在不知道位置的情况下,使用WSN获得的测量是没有用的。三边测量是一种广泛使用的基于WSN的RSSI测量来获得目标位置更新的技术。然而,它遭受由于RSSI测量中的随机变化而产生的高位置估计误差。本文提出了一种基于无距离径向基函数神经网络和卡尔曼滤波的算法RBFN+KF。使用模拟RSSI评估RBFN+KF算法的性能,并与三边测量、多层感知器(MLP)和基于RBFN的估计进行比较。仿真结果表明,与其他三种方法相比,所提出的RBFN+KF算法显示出非常低的位置估计误差。此外,还可以看出,基于RBFN的方法比基于三边测量和MLP的定位方法更节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-Constrained Target Localization Scheme for Wireless Sensor Networks Using Radial Basis Function Neural Network
The indoor object tracking by utilizing received signal strength indicator (RSSI) measurements with the help of wireless sensor network (WSN) is an interesting and important topic in the domain of location-based applications. Without the knowledge of location, the measurements obtained with WSN are of no use. The trilateration is a widely used technique to get location updates of target based on RSSI measurements from WSN. However, it suffers with high location estimation errors arising due to random variations in RSSI measurements. This paper presents a range-free radial basis function neural network (RBFN) and Kalman filtering- (KF-) based algorithm named RBFN+KF. The performance of the RBFN+KF algorithm is evaluated using simulated RSSIs and is compared against trilateration, multilayer perceptron (MLP), and RBFN-based estimations. The simulation results reveal that the proposed RBFN+KF algorithm shows very low location estimation errors compared to the rest of the three approaches. Additionally, it is also seen that RBFN-based approach is more energy efficient than trilateration and MLP-based localization approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
期刊最新文献
An Intrusion Detection Model Based on Feature Selection and Improved One-Dimensional Convolutional Neural Network Convex Combination for Wireless Localization Using Biased RSS Measurements Research on Visual SLAM Navigation Techniques for Dynamic Environments Improved Private Data Protection Scheme for Blockchain Smart Contracts Parameter Identification of Frame Structures by considering Shear Deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1