一种分布式发电电网配电网保护方案

A. Adrianti, Edwindiansyah Asharry, M. Nasir
{"title":"一种分布式发电电网配电网保护方案","authors":"A. Adrianti, Edwindiansyah Asharry, M. Nasir","doi":"10.25077/jnte.v10n2.920.2021","DOIUrl":null,"url":null,"abstract":"Installation of distributed generations (DGs) can cause performance degradation of distribution lines protection. Therefore, the objective of this paper is to propose a protection scheme that can be a solution for this protection line degradation.. The proposed scheme consist of quadrilateral distance relays at upper stream of the lines and directional overcurrent relays at downstream of the lines. The performance of the scheme was tested using Digsilent Powerfactory simulation. The simulation was carried out for four fault types, 0 - 50 Ohms fault resistance and four network conditions/scenarios. The test system consist of three current source i.e. Grid, DG1 and DG2. Variation on-off state of the three current sources is applied in order to check the ability of the scheme to perform correctly for multiple network condition and possibility installation of new DG in the future. The results show that the scheme perform correctly for all bolted fault regardless of fault types, fault location and network scenarios. For three phase and two phase to ground faults the scheme perform correctly for all simulated fault resistance. However, for single line to ground faults and phase to phase faults, the scheme has limitation on maximum fault resistance that can result in correct operation. In general, the proposed scheme able to protect the distribution lines better than the scheme of previous research, but it has a slightly higher chance to perform unwanted operation. Keywords : Distribution line protection, distributed generation, quadrilateral distance relay, directional overcurrent relay","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Distribution Line Protection Scheme for Network with Distributed Generation\",\"authors\":\"A. Adrianti, Edwindiansyah Asharry, M. Nasir\",\"doi\":\"10.25077/jnte.v10n2.920.2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Installation of distributed generations (DGs) can cause performance degradation of distribution lines protection. Therefore, the objective of this paper is to propose a protection scheme that can be a solution for this protection line degradation.. The proposed scheme consist of quadrilateral distance relays at upper stream of the lines and directional overcurrent relays at downstream of the lines. The performance of the scheme was tested using Digsilent Powerfactory simulation. The simulation was carried out for four fault types, 0 - 50 Ohms fault resistance and four network conditions/scenarios. The test system consist of three current source i.e. Grid, DG1 and DG2. Variation on-off state of the three current sources is applied in order to check the ability of the scheme to perform correctly for multiple network condition and possibility installation of new DG in the future. The results show that the scheme perform correctly for all bolted fault regardless of fault types, fault location and network scenarios. For three phase and two phase to ground faults the scheme perform correctly for all simulated fault resistance. However, for single line to ground faults and phase to phase faults, the scheme has limitation on maximum fault resistance that can result in correct operation. In general, the proposed scheme able to protect the distribution lines better than the scheme of previous research, but it has a slightly higher chance to perform unwanted operation. Keywords : Distribution line protection, distributed generation, quadrilateral distance relay, directional overcurrent relay\",\"PeriodicalId\":30660,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jnte.v10n2.920.2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v10n2.920.2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分布式代(dg)的安装会导致配电线路保护性能下降。因此,本文的目的是提出一种可以解决这种保护线退化的保护方案。该方案由线路上游的四边形距离继电器和线路下游的定向过流继电器组成。通过Digsilent Powerfactory仿真测试了该方案的性能。对4种故障类型、0 ~ 50欧姆故障电阻和4种网络条件/场景进行了仿真。测试系统由栅极、DG1和DG2三个电流源组成。为了检验该方案在多种网络条件下正确执行的能力以及将来安装新DG的可能性,采用了三个电流源的变通断状态。结果表明,无论故障类型、故障位置和网络场景如何,该方案都能正确处理所有螺栓故障。对于三相和两相接地故障,该方案对所有模拟故障电阻均具有正确的性能。但对于单线对地故障和相对相故障,该方案存在最大故障电阻限制,不能保证系统正常运行。总的来说,本文提出的方案比以往研究的方案能更好地保护配电线路,但产生不必要操作的可能性略高。关键词:配电网保护,分布式发电,四边形距离继电器,定向过流继电器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Distribution Line Protection Scheme for Network with Distributed Generation
Installation of distributed generations (DGs) can cause performance degradation of distribution lines protection. Therefore, the objective of this paper is to propose a protection scheme that can be a solution for this protection line degradation.. The proposed scheme consist of quadrilateral distance relays at upper stream of the lines and directional overcurrent relays at downstream of the lines. The performance of the scheme was tested using Digsilent Powerfactory simulation. The simulation was carried out for four fault types, 0 - 50 Ohms fault resistance and four network conditions/scenarios. The test system consist of three current source i.e. Grid, DG1 and DG2. Variation on-off state of the three current sources is applied in order to check the ability of the scheme to perform correctly for multiple network condition and possibility installation of new DG in the future. The results show that the scheme perform correctly for all bolted fault regardless of fault types, fault location and network scenarios. For three phase and two phase to ground faults the scheme perform correctly for all simulated fault resistance. However, for single line to ground faults and phase to phase faults, the scheme has limitation on maximum fault resistance that can result in correct operation. In general, the proposed scheme able to protect the distribution lines better than the scheme of previous research, but it has a slightly higher chance to perform unwanted operation. Keywords : Distribution line protection, distributed generation, quadrilateral distance relay, directional overcurrent relay
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
期刊最新文献
Development of DC Motor Speed Control Using PID Based on Arduino and Matlab For Laboratory Trainer IoT-Based Disaster Response Robot for Victim Identification in Building Collapses Techno-Economic Analysis for Raja Ampat Off-Grid System Comparative Analysis of Two-Stage and Single-Stage Models in Batteryless PV Systems for Motor Power Supply Enhanced Identification of Valvular Heart Diseases through Selective Phonocardiogram Features Driven by Convolutional Neural Networks (SFD-CNN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1