二维正交各向异性介质的材料自旋和有限应变准弹性

Q2 Engineering Engineering Transactions Pub Date : 2018-12-20 DOI:10.24423/ENGTRANS.799.20181203
Ivan Yurievitch Zubko
{"title":"二维正交各向异性介质的材料自旋和有限应变准弹性","authors":"Ivan Yurievitch Zubko","doi":"10.24423/ENGTRANS.799.20181203","DOIUrl":null,"url":null,"abstract":"A constitutive material spin tensor in the case of purely elastic finite-strain deformation is introduced for a two-dimensional orthotropic media using the minimizing principle applied to obtain the reloaded configuration of the material volume. This material spin explains the rotation of the orthonormal vector frame which coincides with the material symmetry axes in the initial configuration of the material volume and uniquely corresponds to a set of these axes in the current configuration although it does not coincide with the latter. The given definition is followed by the exact expression which includes the deformation gradient tensor, unit vectors of the initial material anisotropy axes and their axial parameters. This definition allows obtaining a new variant of decomposing any elastic finite-strain motion onto rigid and deformational parts and introducing the material corotational rate. The latter is used for the formulation of the anisotropic rate-type elastic law in the current configuration based on the strain measure which does not belong to the Seth-Hill family. For isotropic as well as for tetragonal media, the introduced material rotation tensor coincides with the rotation tensor from the polar decomposition of a deformation gradient.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Material Spin and Finite-Strain Hypo-Elasticity for Two-Dimensional Orthotropic Media\",\"authors\":\"Ivan Yurievitch Zubko\",\"doi\":\"10.24423/ENGTRANS.799.20181203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A constitutive material spin tensor in the case of purely elastic finite-strain deformation is introduced for a two-dimensional orthotropic media using the minimizing principle applied to obtain the reloaded configuration of the material volume. This material spin explains the rotation of the orthonormal vector frame which coincides with the material symmetry axes in the initial configuration of the material volume and uniquely corresponds to a set of these axes in the current configuration although it does not coincide with the latter. The given definition is followed by the exact expression which includes the deformation gradient tensor, unit vectors of the initial material anisotropy axes and their axial parameters. This definition allows obtaining a new variant of decomposing any elastic finite-strain motion onto rigid and deformational parts and introducing the material corotational rate. The latter is used for the formulation of the anisotropic rate-type elastic law in the current configuration based on the strain measure which does not belong to the Seth-Hill family. For isotropic as well as for tetragonal media, the introduced material rotation tensor coincides with the rotation tensor from the polar decomposition of a deformation gradient.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.799.20181203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.799.20181203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

利用最小化原理,在纯弹性有限应变变形的情况下,引入了二维正交各向异性介质的本构材料自旋张量,以获得材料体积的重新加载配置。这种材料自旋解释了正交矢量帧的旋转,该正交矢量帧与材料体积的初始配置中的材料对称轴重合,并且在当前配置中唯一地对应于这些轴的集合,尽管它与后者不重合。在给出的定义之后,给出了包括变形梯度张量、初始材料各向异性轴的单位向量及其轴向参数的精确表达式。该定义允许获得一种新的变体,将任何弹性有限应变运动分解到刚性和变形部件上,并引入材料共旋率。后者用于在当前配置中基于不属于Seth-Hill族的应变测量来制定各向异性速率型弹性定律。对于各向同性和四方介质,引入的材料旋转张量与变形梯度极性分解的旋转张量一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Material Spin and Finite-Strain Hypo-Elasticity for Two-Dimensional Orthotropic Media
A constitutive material spin tensor in the case of purely elastic finite-strain deformation is introduced for a two-dimensional orthotropic media using the minimizing principle applied to obtain the reloaded configuration of the material volume. This material spin explains the rotation of the orthonormal vector frame which coincides with the material symmetry axes in the initial configuration of the material volume and uniquely corresponds to a set of these axes in the current configuration although it does not coincide with the latter. The given definition is followed by the exact expression which includes the deformation gradient tensor, unit vectors of the initial material anisotropy axes and their axial parameters. This definition allows obtaining a new variant of decomposing any elastic finite-strain motion onto rigid and deformational parts and introducing the material corotational rate. The latter is used for the formulation of the anisotropic rate-type elastic law in the current configuration based on the strain measure which does not belong to the Seth-Hill family. For isotropic as well as for tetragonal media, the introduced material rotation tensor coincides with the rotation tensor from the polar decomposition of a deformation gradient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
期刊最新文献
Investigation of non-stationary processes of an elastic half-space with a built-in elastic cylinder Free vibrations of a nonhomogeneous rod-cylindrical shell-fluid system Mixed-type variational principle for creep problems considering the aggressiveness of external fields Nonlinear feedback control of motion and power of moving sources during heating of the rod Academician Azat Mirzajanzade – 95
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1