石墨烯纳米流体MQL铣削TC21合金表面完整性研究

Ming Li, Tianbiao Yu, Hongyu Li, Lin Yang, Shi Jiashun, Wanshan Wang
{"title":"石墨烯纳米流体MQL铣削TC21合金表面完整性研究","authors":"Ming Li, Tianbiao Yu, Hongyu Li, Lin Yang, Shi Jiashun, Wanshan Wang","doi":"10.1504/IJAT.2019.10019131","DOIUrl":null,"url":null,"abstract":"As a new type of damage-tolerance titanium alloy, TC21 alloy is widely used in aerospace. However, TC21 is a difficult-to-machine material owing to its low thermal conductivity, high chemical activity and low elasticity modulus. In this work, minimum quantity lubrication (MQL) with graphene nanofluid was adopted in TC21 milling. In order to evaluate the effects of graphene nanoparticle on the surface integrity, a series of milling experiments were performed under the dry, gas, pure MQL and graphene nanofluid MQL condition respectively. Results showed that the graphene additive was effective for improving the surface integrity. Overall, the results could be explained that graphene additive could enhance the cooling and lubrication performances of the oil film formed in cutting zone. The findings of this work are expected to give a feasibility and some experimental basis for the application of the graphene additive in MQL milling.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Research on surface integrity in graphene nanofluid MQL milling of TC21 alloy\",\"authors\":\"Ming Li, Tianbiao Yu, Hongyu Li, Lin Yang, Shi Jiashun, Wanshan Wang\",\"doi\":\"10.1504/IJAT.2019.10019131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a new type of damage-tolerance titanium alloy, TC21 alloy is widely used in aerospace. However, TC21 is a difficult-to-machine material owing to its low thermal conductivity, high chemical activity and low elasticity modulus. In this work, minimum quantity lubrication (MQL) with graphene nanofluid was adopted in TC21 milling. In order to evaluate the effects of graphene nanoparticle on the surface integrity, a series of milling experiments were performed under the dry, gas, pure MQL and graphene nanofluid MQL condition respectively. Results showed that the graphene additive was effective for improving the surface integrity. Overall, the results could be explained that graphene additive could enhance the cooling and lubrication performances of the oil film formed in cutting zone. The findings of this work are expected to give a feasibility and some experimental basis for the application of the graphene additive in MQL milling.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAT.2019.10019131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2019.10019131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

摘要

TC21合金作为一种新型的损伤容限钛合金,在航空航天领域有着广泛的应用。然而,TC21由于其低导热性、高化学活性和低弹性模量而成为难以加工的材料。在本工作中,石墨烯纳米流体的最小量润滑(MQL)被用于TC21铣削。为了评估石墨烯纳米颗粒对表面完整性的影响,分别在干燥、气体、纯MQL和石墨烯纳米流体MQL条件下进行了一系列研磨实验。结果表明,石墨烯添加剂对提高表面完整性是有效的。总之,石墨烯添加剂可以提高切削区油膜的冷却和润滑性能。这项工作的发现有望为石墨烯添加剂在MQL铣削中的应用提供可行性和一些实验依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on surface integrity in graphene nanofluid MQL milling of TC21 alloy
As a new type of damage-tolerance titanium alloy, TC21 alloy is widely used in aerospace. However, TC21 is a difficult-to-machine material owing to its low thermal conductivity, high chemical activity and low elasticity modulus. In this work, minimum quantity lubrication (MQL) with graphene nanofluid was adopted in TC21 milling. In order to evaluate the effects of graphene nanoparticle on the surface integrity, a series of milling experiments were performed under the dry, gas, pure MQL and graphene nanofluid MQL condition respectively. Results showed that the graphene additive was effective for improving the surface integrity. Overall, the results could be explained that graphene additive could enhance the cooling and lubrication performances of the oil film formed in cutting zone. The findings of this work are expected to give a feasibility and some experimental basis for the application of the graphene additive in MQL milling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Abrasive Technology
International Journal of Abrasive Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
13
期刊最新文献
A modeling study of grinding force for axial feed machining of Si3N4-diamond grinding wheel endface based on specific chip energy Experimental study on plunge-cut internal cylindrical electrolysis grinding processing of bearing ring Experimental study on the processing of sapphire with a free-abrasive assisted fixed-abrasive lapping plate Investigation on Workpiece Microstructure and Wheel Performance on Grinding Titanium Metal Matrix Composites Modelling of Material Removal in Unidirectional Abrasive Flow Machining process using Classical Indentation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1