基于贝叶斯网络的联合收割机低破碎率运行策略研究

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Elektronika Ir Elektrotechnika Pub Date : 2022-10-26 DOI:10.5755/j02.eie.31179
Yehong Liu, Dong Sun, Baoyan Xu, Shumao Wang, Xin Wang
{"title":"基于贝叶斯网络的联合收割机低破碎率运行策略研究","authors":"Yehong Liu, Dong Sun, Baoyan Xu, Shumao Wang, Xin Wang","doi":"10.5755/j02.eie.31179","DOIUrl":null,"url":null,"abstract":"As the main harvesting machinery, the combine harvester is often due to improper adjustment of its operating parameters resulting in increased crushing rate and grain waste during the harvesting process. To quickly obtain the working range of key operating parameters under low crushing rate, this study conducted field tests on the relevant parameters affecting the crushing rate and finally selected the travel speed, feed rate, threshing drum speed, concave clearance, and crushing rate as node variables for the construction of the Bayesian network model. Based on the “search-and-score” algorithm, the best network structure can be obtained using the combination of the Akaike Information Criterion (AIC) scoring function and the hill-climbing method. In the obtained network, adjusting the proportion of the lowest level of the crushing rate nodes to 100 %, the operation strategy under the condition of low broken rate obtained by the network reasoning was: feed rate < 6 kg/s, travel speed < 5 km/h, concave clearance = 10 mm, threshing drum speed < 900 rpm. Three field trials were carried out using this optimized operation strategy, and the measured crushing rates were 0.93 %, 0.95 %, and 1.07 %, respectively, and the average crushing rate was 0.98 %. At the same time, when the optimized strategy was not used, the crushing rates were, respectively, 1.12 %, 1.41 %, and 1.93 %, and the average crushing rate was 1.48 %. The test results prove that the operation strategy based on Bayesian network inference can effectively reduce the crushing rate in the harvesting process.\n","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combine Harvester Low Crushing Rate Operation Strategy Research by Using Bayesian Network\",\"authors\":\"Yehong Liu, Dong Sun, Baoyan Xu, Shumao Wang, Xin Wang\",\"doi\":\"10.5755/j02.eie.31179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the main harvesting machinery, the combine harvester is often due to improper adjustment of its operating parameters resulting in increased crushing rate and grain waste during the harvesting process. To quickly obtain the working range of key operating parameters under low crushing rate, this study conducted field tests on the relevant parameters affecting the crushing rate and finally selected the travel speed, feed rate, threshing drum speed, concave clearance, and crushing rate as node variables for the construction of the Bayesian network model. Based on the “search-and-score” algorithm, the best network structure can be obtained using the combination of the Akaike Information Criterion (AIC) scoring function and the hill-climbing method. In the obtained network, adjusting the proportion of the lowest level of the crushing rate nodes to 100 %, the operation strategy under the condition of low broken rate obtained by the network reasoning was: feed rate < 6 kg/s, travel speed < 5 km/h, concave clearance = 10 mm, threshing drum speed < 900 rpm. Three field trials were carried out using this optimized operation strategy, and the measured crushing rates were 0.93 %, 0.95 %, and 1.07 %, respectively, and the average crushing rate was 0.98 %. At the same time, when the optimized strategy was not used, the crushing rates were, respectively, 1.12 %, 1.41 %, and 1.93 %, and the average crushing rate was 1.48 %. The test results prove that the operation strategy based on Bayesian network inference can effectively reduce the crushing rate in the harvesting process.\\n\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.31179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

联合收割机作为主要的收割机械,在收割过程中经常因操作参数调整不当而导致破碎率增加和粮食浪费。为了快速获得低破碎率下关键操作参数的工作范围,本研究对影响破碎率的相关参数进行了现场测试,最终选择行进速度、进料率、脱粒滚筒速度、凹部间隙和破碎率作为节点变量,构建贝叶斯网络模型。在“搜索和评分”算法的基础上,将Akaike信息准则(AIC)评分函数与爬山法相结合,可以获得最佳的网络结构。在所获得的网络中,将破碎率最低级别节点的比例调整为100%,通过网络推理获得的低破碎率条件下的操作策略为:进给速度<6kg/s,行进速度<5km/h,凹部间隙=10mm,脱粒鼓速度<900rpm。使用该优化操作策略进行了三次现场试验,实测破碎率分别为0.93%、0.95%和1.07%,平均破碎率为0.98%,试验结果表明,基于贝叶斯网络推理的操作策略可以有效降低收割过程中的破碎率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combine Harvester Low Crushing Rate Operation Strategy Research by Using Bayesian Network
As the main harvesting machinery, the combine harvester is often due to improper adjustment of its operating parameters resulting in increased crushing rate and grain waste during the harvesting process. To quickly obtain the working range of key operating parameters under low crushing rate, this study conducted field tests on the relevant parameters affecting the crushing rate and finally selected the travel speed, feed rate, threshing drum speed, concave clearance, and crushing rate as node variables for the construction of the Bayesian network model. Based on the “search-and-score” algorithm, the best network structure can be obtained using the combination of the Akaike Information Criterion (AIC) scoring function and the hill-climbing method. In the obtained network, adjusting the proportion of the lowest level of the crushing rate nodes to 100 %, the operation strategy under the condition of low broken rate obtained by the network reasoning was: feed rate < 6 kg/s, travel speed < 5 km/h, concave clearance = 10 mm, threshing drum speed < 900 rpm. Three field trials were carried out using this optimized operation strategy, and the measured crushing rates were 0.93 %, 0.95 %, and 1.07 %, respectively, and the average crushing rate was 0.98 %. At the same time, when the optimized strategy was not used, the crushing rates were, respectively, 1.12 %, 1.41 %, and 1.93 %, and the average crushing rate was 1.48 %. The test results prove that the operation strategy based on Bayesian network inference can effectively reduce the crushing rate in the harvesting process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
期刊最新文献
Optimum Design of an 18-Pulse Phase Shifting Autotransformer Rectifier to Improve the Power Quality of Cascaded H-Bridge Motor Driver Classification of Resampled Pediatric Epilepsy EEG Data Using Artificial Neural Networks with Discrete Fourier Transforms Time-Based High-Pass, Low-Pass, Shelf, and Notch Filters Deep Learning Method for Power Side-Channel Analysis on Chip Leakages Design of a High-Performance Control Scheme for a Grid-Connected DFIG‐Based Wind Energy Conversion System Using Model Predictive Control and Hysteresis Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1