{"title":"红外光谱监测水浸对光降解杨木的影响。","authors":"Z. Pásztory, L. Tolvaj, D. Varga","doi":"10.37763/wr.1336-4561/65.6.885894","DOIUrl":null,"url":null,"abstract":"Poplar (Populus x euramericana cv. pannonia) samples were irradiated using ultraviolet light emitter mercury lamp. Other series of specimens were treated with the combination of UV radiation and water leaching. The total duration of UV radiation for both series of specimens was 20 days. The total duration of water leaching was 10 days. One cycle of the combined treatment consisted of 2-day UV radiation followed by one day water leaching. The IR measurement was carried out after both UV radiation and water leaching to monitor both effects separately. Lignin degradation of water leached samples was found to be greater than that of the solely UV treated samples. The guaiacyl and the syringyl lignin showed similar degradation properties. The unconjugated carbonyl groups generated by the photodegradation proved to be the most sensitive chemical components to leaching. As a consequence of photodegradation, two absorption bands of unconjugated carbonyl groups were grown up at 1715 and 1759 cm-1 wavenumbers. The band at 1759 cm-1 was much more sensitive to water leaching than the band at 1715 cm-1. Ten days of water leaching was long enough to remove all unconjugated carbonyls generated by the photodegradation. The water was able to leach out carbonyl groups (absorbing at 1745 cm-1) originally presented in poplar wood as well.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of water leaching on photodegraded poplar wood monitored by IR spectroscopy.\",\"authors\":\"Z. Pásztory, L. Tolvaj, D. Varga\",\"doi\":\"10.37763/wr.1336-4561/65.6.885894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poplar (Populus x euramericana cv. pannonia) samples were irradiated using ultraviolet light emitter mercury lamp. Other series of specimens were treated with the combination of UV radiation and water leaching. The total duration of UV radiation for both series of specimens was 20 days. The total duration of water leaching was 10 days. One cycle of the combined treatment consisted of 2-day UV radiation followed by one day water leaching. The IR measurement was carried out after both UV radiation and water leaching to monitor both effects separately. Lignin degradation of water leached samples was found to be greater than that of the solely UV treated samples. The guaiacyl and the syringyl lignin showed similar degradation properties. The unconjugated carbonyl groups generated by the photodegradation proved to be the most sensitive chemical components to leaching. As a consequence of photodegradation, two absorption bands of unconjugated carbonyl groups were grown up at 1715 and 1759 cm-1 wavenumbers. The band at 1759 cm-1 was much more sensitive to water leaching than the band at 1715 cm-1. Ten days of water leaching was long enough to remove all unconjugated carbonyls generated by the photodegradation. The water was able to leach out carbonyl groups (absorbing at 1745 cm-1) originally presented in poplar wood as well.\",\"PeriodicalId\":23786,\"journal\":{\"name\":\"Wood Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37763/wr.1336-4561/65.6.885894\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/wr.1336-4561/65.6.885894","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Effect of water leaching on photodegraded poplar wood monitored by IR spectroscopy.
Poplar (Populus x euramericana cv. pannonia) samples were irradiated using ultraviolet light emitter mercury lamp. Other series of specimens were treated with the combination of UV radiation and water leaching. The total duration of UV radiation for both series of specimens was 20 days. The total duration of water leaching was 10 days. One cycle of the combined treatment consisted of 2-day UV radiation followed by one day water leaching. The IR measurement was carried out after both UV radiation and water leaching to monitor both effects separately. Lignin degradation of water leached samples was found to be greater than that of the solely UV treated samples. The guaiacyl and the syringyl lignin showed similar degradation properties. The unconjugated carbonyl groups generated by the photodegradation proved to be the most sensitive chemical components to leaching. As a consequence of photodegradation, two absorption bands of unconjugated carbonyl groups were grown up at 1715 and 1759 cm-1 wavenumbers. The band at 1759 cm-1 was much more sensitive to water leaching than the band at 1715 cm-1. Ten days of water leaching was long enough to remove all unconjugated carbonyls generated by the photodegradation. The water was able to leach out carbonyl groups (absorbing at 1745 cm-1) originally presented in poplar wood as well.
期刊介绍:
Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.