斯洛伐克天然沸石作为去除废水中抗生素的合适介质

IF 0.9 Q4 CHEMISTRY, MULTIDISCIPLINARY Acta Chimica Slovaca Pub Date : 2019-10-01 DOI:10.2478/acs-2019-0022
Petra Szabová, Michaela Plekancová, Nikolas Gróf, I. Bodík
{"title":"斯洛伐克天然沸石作为去除废水中抗生素的合适介质","authors":"Petra Szabová, Michaela Plekancová, Nikolas Gróf, I. Bodík","doi":"10.2478/acs-2019-0022","DOIUrl":null,"url":null,"abstract":"Abstract Pharmaceuticals are one of the most used compounds present in various environmental compartments. Due to their high consumption and possible unhealthy effect on ecosystems, pharmaceuticals have been identified as “emerging organic contaminants”. Since these compounds have medium to high polarity, they end up in the water compartment after being used. This work deals with the sorption of three pharmaceutical substances from the therapeutic group of antibiotics. Specifically we have focused on Azithromycin, Clarithromycin and Erythromycin. Three fractions of the natural Slovak zeolites (200 μm, 0.5—1 mm and 1.5—2 mm) were used as the sorption medium. Experimental results have proven very effective sorption of antibiotics by zeolites. Azithromycin removal of over 99 % for all three zeolite fractions from wastewater treatment plant Stupava and wastewater treatment plant Devínska Nová Ves was achieved. Clarithromycin removal of 79 % for fraction 1—2.5 mm, 87.3 % for fraction 0.5—1 mm and of 99.8 % for fraction 200 μm from the effluent of wastewater treatment plant Stupava was observed. Erythromycin removal of 31.3 % for fraction 1—2.5 mm, 66.9 % for fraction 0.5—1mm and of 94.7 % for fraction 200 μm from effluent of wastewater treatment plant Stupava was measured. More than 95 % of Clarithromycin and Erythromycin were eliminated from the effluent of wastewater treatment plant Devínska Nová Ves. The highest elimination percentage was observed for the smallest zeolite fraction due to the highest specific surface area.","PeriodicalId":7088,"journal":{"name":"Acta Chimica Slovaca","volume":"12 1","pages":"163 - 167"},"PeriodicalIF":0.9000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Slovak natural zeolites as a suitable medium for antibiotics elimination from wastewater\",\"authors\":\"Petra Szabová, Michaela Plekancová, Nikolas Gróf, I. Bodík\",\"doi\":\"10.2478/acs-2019-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Pharmaceuticals are one of the most used compounds present in various environmental compartments. Due to their high consumption and possible unhealthy effect on ecosystems, pharmaceuticals have been identified as “emerging organic contaminants”. Since these compounds have medium to high polarity, they end up in the water compartment after being used. This work deals with the sorption of three pharmaceutical substances from the therapeutic group of antibiotics. Specifically we have focused on Azithromycin, Clarithromycin and Erythromycin. Three fractions of the natural Slovak zeolites (200 μm, 0.5—1 mm and 1.5—2 mm) were used as the sorption medium. Experimental results have proven very effective sorption of antibiotics by zeolites. Azithromycin removal of over 99 % for all three zeolite fractions from wastewater treatment plant Stupava and wastewater treatment plant Devínska Nová Ves was achieved. Clarithromycin removal of 79 % for fraction 1—2.5 mm, 87.3 % for fraction 0.5—1 mm and of 99.8 % for fraction 200 μm from the effluent of wastewater treatment plant Stupava was observed. Erythromycin removal of 31.3 % for fraction 1—2.5 mm, 66.9 % for fraction 0.5—1mm and of 94.7 % for fraction 200 μm from effluent of wastewater treatment plant Stupava was measured. More than 95 % of Clarithromycin and Erythromycin were eliminated from the effluent of wastewater treatment plant Devínska Nová Ves. The highest elimination percentage was observed for the smallest zeolite fraction due to the highest specific surface area.\",\"PeriodicalId\":7088,\"journal\":{\"name\":\"Acta Chimica Slovaca\",\"volume\":\"12 1\",\"pages\":\"163 - 167\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Chimica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acs-2019-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Chimica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acs-2019-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

摘要药物是存在于各种环境分区中的最常用的化合物之一。由于其高消耗量和可能对生态系统产生的不健康影响,药物被确定为“新兴的有机污染物”。由于这些化合物具有中等到高的极性,它们在使用后最终进入水室。这项工作涉及抗生素治疗组中三种药物的吸附。我们特别关注阿奇霉素、克拉霉素和红霉素。斯洛伐克天然沸石的三个部分(200μm、0.5-1mm和1.5-2mm)用作吸附介质。实验结果证明沸石对抗生素的吸附非常有效。废水处理厂Stupava和废水处理厂Devínska NováVes的所有三种沸石馏分的阿奇霉素去除率均超过99%。从Stupava污水处理厂的出水中观察到,1-2.5mm组分的克拉霉素去除率为79%,0.5-1mm组分为87.3%,200μm组分为99.8%。测定了Stupava污水处理厂出水中1-2.5mm组分的红霉素去除率为31.3%,0.5--1mm组分为66.9%,200μm组分为94.7%。废水处理厂Devínska NováVes的废水中,超过95%的克拉霉素和红霉素被清除。由于最高的比表面积,对于最小的沸石组分观察到最高的消除百分比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slovak natural zeolites as a suitable medium for antibiotics elimination from wastewater
Abstract Pharmaceuticals are one of the most used compounds present in various environmental compartments. Due to their high consumption and possible unhealthy effect on ecosystems, pharmaceuticals have been identified as “emerging organic contaminants”. Since these compounds have medium to high polarity, they end up in the water compartment after being used. This work deals with the sorption of three pharmaceutical substances from the therapeutic group of antibiotics. Specifically we have focused on Azithromycin, Clarithromycin and Erythromycin. Three fractions of the natural Slovak zeolites (200 μm, 0.5—1 mm and 1.5—2 mm) were used as the sorption medium. Experimental results have proven very effective sorption of antibiotics by zeolites. Azithromycin removal of over 99 % for all three zeolite fractions from wastewater treatment plant Stupava and wastewater treatment plant Devínska Nová Ves was achieved. Clarithromycin removal of 79 % for fraction 1—2.5 mm, 87.3 % for fraction 0.5—1 mm and of 99.8 % for fraction 200 μm from the effluent of wastewater treatment plant Stupava was observed. Erythromycin removal of 31.3 % for fraction 1—2.5 mm, 66.9 % for fraction 0.5—1mm and of 94.7 % for fraction 200 μm from effluent of wastewater treatment plant Stupava was measured. More than 95 % of Clarithromycin and Erythromycin were eliminated from the effluent of wastewater treatment plant Devínska Nová Ves. The highest elimination percentage was observed for the smallest zeolite fraction due to the highest specific surface area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Chimica Slovaca
Acta Chimica Slovaca CHEMISTRY, MULTIDISCIPLINARY-
自引率
12.50%
发文量
11
期刊最新文献
Thermal- and light-induced SCO effect in Fe(II) complexes and coordination polymers Stability of ferrate during long-term storage Colour masterbatches and their use in polylactic acid fibres dyeing DFT studies of camptothecins cytotoxicity IV — active and inactive forms of irinotecan Utilization of Opuntia as an alternative ingredient in value added bread and pasta products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1