{"title":"MCNPX板燃料TRIGA 2000堆中子参数分析","authors":"A. Nuryana, R. S. Mahmudah, A. Khakim","doi":"10.55981/aij.2023.1199","DOIUrl":null,"url":null,"abstract":"A novel simulation to calculate the neutronic parameters of the TRIGA 2000 reactor using plate-type fuel has been performed. The plate fuel used was produced by the Indonesian Nuclear Industry (PT INUKI) with U3Si2-Al material. Neutronic parameters based on INUKI’s plate-type fuel dimension and the current TRIGA’s configuration were simulated using MCNPX. The simulation was performed by modeling the complete reactor’s configuration on a fresh fuel core state. We obtained the kinetic parameter values from the simulation, i.e., delayed neutron fraction of 8.11×10‑3, a prompt neutron lifetime of 2.0551×10‑4 s, and an average neutron generation time of 1.87×10‑4 s. The excess reactivity of the reactor was 9.02 %Δk/k, while reactivity in the one-stuck-rod state was below ‑0.5 $ with an average value of ‑3.40 %Δk/k (‑4.19 $). The average thermal neutron flux peak occurred at the central irradiation position with the value of 3.0×1013 to 3.1×1013 n/(cm2 s). The reactor has a power peaking factor of 1.379 in the control rod position of 0 % on D3 fuel. The reactor had a negative feedback reactivity coefficient, except for the moderator coefficient. These results suggest that the current configuration of plate-type fuel met the nuclear reactor neutronic safety standards.","PeriodicalId":8647,"journal":{"name":"Atom Indonesia","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutronic Parameter Analysis of Plate-Type Fueled TRIGA 2000 Reactor by MCNPX\",\"authors\":\"A. Nuryana, R. S. Mahmudah, A. Khakim\",\"doi\":\"10.55981/aij.2023.1199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel simulation to calculate the neutronic parameters of the TRIGA 2000 reactor using plate-type fuel has been performed. The plate fuel used was produced by the Indonesian Nuclear Industry (PT INUKI) with U3Si2-Al material. Neutronic parameters based on INUKI’s plate-type fuel dimension and the current TRIGA’s configuration were simulated using MCNPX. The simulation was performed by modeling the complete reactor’s configuration on a fresh fuel core state. We obtained the kinetic parameter values from the simulation, i.e., delayed neutron fraction of 8.11×10‑3, a prompt neutron lifetime of 2.0551×10‑4 s, and an average neutron generation time of 1.87×10‑4 s. The excess reactivity of the reactor was 9.02 %Δk/k, while reactivity in the one-stuck-rod state was below ‑0.5 $ with an average value of ‑3.40 %Δk/k (‑4.19 $). The average thermal neutron flux peak occurred at the central irradiation position with the value of 3.0×1013 to 3.1×1013 n/(cm2 s). The reactor has a power peaking factor of 1.379 in the control rod position of 0 % on D3 fuel. The reactor had a negative feedback reactivity coefficient, except for the moderator coefficient. These results suggest that the current configuration of plate-type fuel met the nuclear reactor neutronic safety standards.\",\"PeriodicalId\":8647,\"journal\":{\"name\":\"Atom Indonesia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atom Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55981/aij.2023.1199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atom Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55981/aij.2023.1199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Neutronic Parameter Analysis of Plate-Type Fueled TRIGA 2000 Reactor by MCNPX
A novel simulation to calculate the neutronic parameters of the TRIGA 2000 reactor using plate-type fuel has been performed. The plate fuel used was produced by the Indonesian Nuclear Industry (PT INUKI) with U3Si2-Al material. Neutronic parameters based on INUKI’s plate-type fuel dimension and the current TRIGA’s configuration were simulated using MCNPX. The simulation was performed by modeling the complete reactor’s configuration on a fresh fuel core state. We obtained the kinetic parameter values from the simulation, i.e., delayed neutron fraction of 8.11×10‑3, a prompt neutron lifetime of 2.0551×10‑4 s, and an average neutron generation time of 1.87×10‑4 s. The excess reactivity of the reactor was 9.02 %Δk/k, while reactivity in the one-stuck-rod state was below ‑0.5 $ with an average value of ‑3.40 %Δk/k (‑4.19 $). The average thermal neutron flux peak occurred at the central irradiation position with the value of 3.0×1013 to 3.1×1013 n/(cm2 s). The reactor has a power peaking factor of 1.379 in the control rod position of 0 % on D3 fuel. The reactor had a negative feedback reactivity coefficient, except for the moderator coefficient. These results suggest that the current configuration of plate-type fuel met the nuclear reactor neutronic safety standards.
期刊介绍:
The focus of Atom Indonesia is research and development in nuclear science and technology. The scope of this journal covers experimental and analytical research in nuclear science and technology. The topics include nuclear physics, reactor physics, radioactive waste, fuel element, radioisotopes, radiopharmacy, radiation, and neutron scattering, as well as their utilization in agriculture, industry, health, environment, energy, material science and technology, and related fields.