Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill
{"title":"新鲜与固定冷冻猪结肠组织宏观与微观力学性能的比较。","authors":"Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill","doi":"10.2139/ssrn.4236169","DOIUrl":null,"url":null,"abstract":"Mechanical changes to the microenvironment of the extracellular matrix (ECM) in tissue have been hypothesised to elicit a pathogenic response in the surrounding cells. Hence, 3D scaffolds are a popular method of studying cellular behaviour under conditions that mimic in vivo microenvironment. To create a 3D biomimetic scaffold that captures the in vivo ECM microenvironment a robust mechanical characterisation of the whole ECM at the microscale is necessary. This study examined the multiscale methods of characterising the ECM microenvironment using porcine colon tissue. To facilitate fresh tissue microscale mechanical characterisation, a protocol for sectioning fresh, unfixed, soft biological tissue was developed. Four experiments examined both the microscale and macroscale mechanics of both fresh (Fr) and fixed-frozen (FF) porcine colonic tissue using microindentation for microscale testing and uniaxial compression testing for macroscale testing. The results obtained in this study show a significant difference in elastic modulus between Fr and FF tissue at both the macroscale and microscale. There was an order of magnitude difference between the Fr and FF tissue at the microscale between each of the three layers of the colon tested i.e. the muscularis propria (MP), the submucosa (SM) and the mucosa (M). Macroscale testing cannot capture these regional differences. The findings in this study suggest that the most appropriate method for mechanically characterising the ECM is fresh microscale mechanical microindentation. These methods can be used on a range of biological tissues to create 3D biomimetic scaffolds that are more representative of the in vivo ECM, allowing for a more in-depth characterisation of the disease process.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105599"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of macroscale and microscale mechanical properties of fresh and fixed-frozen porcine colonic tissue.\",\"authors\":\"Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill\",\"doi\":\"10.2139/ssrn.4236169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical changes to the microenvironment of the extracellular matrix (ECM) in tissue have been hypothesised to elicit a pathogenic response in the surrounding cells. Hence, 3D scaffolds are a popular method of studying cellular behaviour under conditions that mimic in vivo microenvironment. To create a 3D biomimetic scaffold that captures the in vivo ECM microenvironment a robust mechanical characterisation of the whole ECM at the microscale is necessary. This study examined the multiscale methods of characterising the ECM microenvironment using porcine colon tissue. To facilitate fresh tissue microscale mechanical characterisation, a protocol for sectioning fresh, unfixed, soft biological tissue was developed. Four experiments examined both the microscale and macroscale mechanics of both fresh (Fr) and fixed-frozen (FF) porcine colonic tissue using microindentation for microscale testing and uniaxial compression testing for macroscale testing. The results obtained in this study show a significant difference in elastic modulus between Fr and FF tissue at both the macroscale and microscale. There was an order of magnitude difference between the Fr and FF tissue at the microscale between each of the three layers of the colon tested i.e. the muscularis propria (MP), the submucosa (SM) and the mucosa (M). Macroscale testing cannot capture these regional differences. The findings in this study suggest that the most appropriate method for mechanically characterising the ECM is fresh microscale mechanical microindentation. These methods can be used on a range of biological tissues to create 3D biomimetic scaffolds that are more representative of the in vivo ECM, allowing for a more in-depth characterisation of the disease process.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"138 1\",\"pages\":\"105599\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4236169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4236169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of macroscale and microscale mechanical properties of fresh and fixed-frozen porcine colonic tissue.
Mechanical changes to the microenvironment of the extracellular matrix (ECM) in tissue have been hypothesised to elicit a pathogenic response in the surrounding cells. Hence, 3D scaffolds are a popular method of studying cellular behaviour under conditions that mimic in vivo microenvironment. To create a 3D biomimetic scaffold that captures the in vivo ECM microenvironment a robust mechanical characterisation of the whole ECM at the microscale is necessary. This study examined the multiscale methods of characterising the ECM microenvironment using porcine colon tissue. To facilitate fresh tissue microscale mechanical characterisation, a protocol for sectioning fresh, unfixed, soft biological tissue was developed. Four experiments examined both the microscale and macroscale mechanics of both fresh (Fr) and fixed-frozen (FF) porcine colonic tissue using microindentation for microscale testing and uniaxial compression testing for macroscale testing. The results obtained in this study show a significant difference in elastic modulus between Fr and FF tissue at both the macroscale and microscale. There was an order of magnitude difference between the Fr and FF tissue at the microscale between each of the three layers of the colon tested i.e. the muscularis propria (MP), the submucosa (SM) and the mucosa (M). Macroscale testing cannot capture these regional differences. The findings in this study suggest that the most appropriate method for mechanically characterising the ECM is fresh microscale mechanical microindentation. These methods can be used on a range of biological tissues to create 3D biomimetic scaffolds that are more representative of the in vivo ECM, allowing for a more in-depth characterisation of the disease process.