面具背后:基于深度学习的检测和识别

Ade Nurhopipah, Irfan Rifai Azziz, Jali Suhaman
{"title":"面具背后:基于深度学习的检测和识别","authors":"Ade Nurhopipah, Irfan Rifai Azziz, Jali Suhaman","doi":"10.22146/ijccs.72075","DOIUrl":null,"url":null,"abstract":"COVID-19 prevention procedures are executed to support public services and business continuity in a pandemic situation. Manual mask use monitoring is not efficient as it requires resources to monitor people at all times. Therefore, this task can be supported by automated surveillance systems based on Deep Learning. We performed mask detection and face recognition for a real-environment dataset. YOLOV3 as a one-stage detector was implemented to simultaneously generate a bounding box of the face area and class prediction. In face recognition, we compared the performance of three pre-trained models, namely ResNet152V2, InceptionV3, and Xception. The mask detection showed promising results with MAP=0.8960 on training and MAP=0.8957 on validation. We chose the Xception model for face recognition because it has equal quality as ResNet152V2 but has fewer parameters. Xception achieved a minimal loss value in the validation of 0.09157 with perfect accuracy on facial images larger than 100 pixels. Overall the system delivers promising results and can identify faces, even those behind the mask.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behind the Mask: Detection and Recognition Based-on Deep Learning\",\"authors\":\"Ade Nurhopipah, Irfan Rifai Azziz, Jali Suhaman\",\"doi\":\"10.22146/ijccs.72075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 prevention procedures are executed to support public services and business continuity in a pandemic situation. Manual mask use monitoring is not efficient as it requires resources to monitor people at all times. Therefore, this task can be supported by automated surveillance systems based on Deep Learning. We performed mask detection and face recognition for a real-environment dataset. YOLOV3 as a one-stage detector was implemented to simultaneously generate a bounding box of the face area and class prediction. In face recognition, we compared the performance of three pre-trained models, namely ResNet152V2, InceptionV3, and Xception. The mask detection showed promising results with MAP=0.8960 on training and MAP=0.8957 on validation. We chose the Xception model for face recognition because it has equal quality as ResNet152V2 but has fewer parameters. Xception achieved a minimal loss value in the validation of 0.09157 with perfect accuracy on facial images larger than 100 pixels. Overall the system delivers promising results and can identify faces, even those behind the mask.\",\"PeriodicalId\":31625,\"journal\":{\"name\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijccs.72075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.72075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

执行新冠肺炎预防程序是为了在大流行情况下支持公共服务和业务连续性。手动口罩使用监控并不高效,因为它需要资源来随时监控人员。因此,这项任务可以得到基于深度学习的自动化监控系统的支持。我们对真实环境数据集进行了掩码检测和人脸识别。YOLOV3作为一级检测器被实现为同时生成人脸区域的边界框和类别预测。在人脸识别方面,我们比较了三个预训练模型的性能,即ResNet152V2、InceptionV3和Xception。掩码检测显示出有希望的结果,训练时MAP=0.8960,验证时MAP=0.8 957。我们选择Xception模型进行人脸识别,因为它具有与ResNet152V2相同的质量,但参数较少。Xception在大于100像素的面部图像上以完美的精度实现了0.09157的最小损失值。总的来说,该系统提供了有希望的结果,可以识别人脸,甚至是面具后面的人脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behind the Mask: Detection and Recognition Based-on Deep Learning
COVID-19 prevention procedures are executed to support public services and business continuity in a pandemic situation. Manual mask use monitoring is not efficient as it requires resources to monitor people at all times. Therefore, this task can be supported by automated surveillance systems based on Deep Learning. We performed mask detection and face recognition for a real-environment dataset. YOLOV3 as a one-stage detector was implemented to simultaneously generate a bounding box of the face area and class prediction. In face recognition, we compared the performance of three pre-trained models, namely ResNet152V2, InceptionV3, and Xception. The mask detection showed promising results with MAP=0.8960 on training and MAP=0.8957 on validation. We chose the Xception model for face recognition because it has equal quality as ResNet152V2 but has fewer parameters. Xception achieved a minimal loss value in the validation of 0.09157 with perfect accuracy on facial images larger than 100 pixels. Overall the system delivers promising results and can identify faces, even those behind the mask.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1