三元乙丙橡胶/地面轮胎胶料的脱硫化参数及力学性能

IF 1.2 4区 工程技术 Q4 POLYMER SCIENCE Rubber Chemistry and Technology Pub Date : 2023-02-22 DOI:10.5254/rct.23.77949
D. Rigotti, A. Dorigato, F. Valentini, A. Pegoretti
{"title":"三元乙丙橡胶/地面轮胎胶料的脱硫化参数及力学性能","authors":"D. Rigotti, A. Dorigato, F. Valentini, A. Pegoretti","doi":"10.5254/rct.23.77949","DOIUrl":null,"url":null,"abstract":"\n Ground tire rubber (GTR) from end-of-life tires was mechanically devulcanized in a lab-made two-roll machine. Parameters such as rolling speed and number of rolling cycles were systematically changed, and their effects on the degree of devulcanization and on the chemical structure of the resulting materials were investigated. Milder devulcanization conditions promoted a selective scission of S–S bonds inside the macromolecular structure of GTR, whereas harsher processing parameters led to a more pronounced and undesired C–C and C–S scission in the rubber main chains. Next, two different amounts of GTR and devulcanized GTR (dGTR) were added through melt compounding to an EPDM. The effect of the devulcanization parameters and of the GTR/dGTR loading on the microstructural and thermomechanical properties of the resulting compounds was systematically investigated. A better interface was found for dGTR than GTR, due to revulcanization in which the restored cross-link sites could form chemical bonds with the EPDM matrix; thus, energy absorption and strain at break increased. The possibility to produce novel environmentally friendly EPDM compounds with tailorable properties with respect to the neat matrix and with a lower cost and raw material amount has thus been demonstrated.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEVULCANIZATION PARAMETERS AND MECHANICAL PROPERTIES OF EPDM/GROUND TIRE RUBBER COMPOUNDS\",\"authors\":\"D. Rigotti, A. Dorigato, F. Valentini, A. Pegoretti\",\"doi\":\"10.5254/rct.23.77949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ground tire rubber (GTR) from end-of-life tires was mechanically devulcanized in a lab-made two-roll machine. Parameters such as rolling speed and number of rolling cycles were systematically changed, and their effects on the degree of devulcanization and on the chemical structure of the resulting materials were investigated. Milder devulcanization conditions promoted a selective scission of S–S bonds inside the macromolecular structure of GTR, whereas harsher processing parameters led to a more pronounced and undesired C–C and C–S scission in the rubber main chains. Next, two different amounts of GTR and devulcanized GTR (dGTR) were added through melt compounding to an EPDM. The effect of the devulcanization parameters and of the GTR/dGTR loading on the microstructural and thermomechanical properties of the resulting compounds was systematically investigated. A better interface was found for dGTR than GTR, due to revulcanization in which the restored cross-link sites could form chemical bonds with the EPDM matrix; thus, energy absorption and strain at break increased. The possibility to produce novel environmentally friendly EPDM compounds with tailorable properties with respect to the neat matrix and with a lower cost and raw material amount has thus been demonstrated.\",\"PeriodicalId\":21349,\"journal\":{\"name\":\"Rubber Chemistry and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rubber Chemistry and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5254/rct.23.77949\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.23.77949","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在实验室制造的双辊机器中对报废轮胎的研磨轮胎橡胶(GTR)进行机械脱硫。系统地改变了轧制速度和轧制循环次数等参数,并研究了它们对脱硫程度和所得材料化学结构的影响。温和的脱硫条件促进了GTR大分子结构内S–S键的选择性断裂,而更苛刻的工艺参数导致橡胶主链中更明显和不希望的C–C和C–S断裂。接下来,通过熔融复合将两种不同量的GTR和脱硫GTR(dGTR)添加到EPDM中。系统地研究了脱硫参数和GTR/dGTR负载对所得化合物的微观结构和热机械性能的影响。发现dGTR的界面比GTR更好,这是由于再硫化,其中恢复的交联位点可以与EPDM基体形成化学键;因此,能量吸收和断裂应变增加。因此,已经证明了生产新型环保三元乙丙橡胶化合物的可能性,该化合物相对于纯基质具有可定制的性能,并且具有较低的成本和原材料量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEVULCANIZATION PARAMETERS AND MECHANICAL PROPERTIES OF EPDM/GROUND TIRE RUBBER COMPOUNDS
Ground tire rubber (GTR) from end-of-life tires was mechanically devulcanized in a lab-made two-roll machine. Parameters such as rolling speed and number of rolling cycles were systematically changed, and their effects on the degree of devulcanization and on the chemical structure of the resulting materials were investigated. Milder devulcanization conditions promoted a selective scission of S–S bonds inside the macromolecular structure of GTR, whereas harsher processing parameters led to a more pronounced and undesired C–C and C–S scission in the rubber main chains. Next, two different amounts of GTR and devulcanized GTR (dGTR) were added through melt compounding to an EPDM. The effect of the devulcanization parameters and of the GTR/dGTR loading on the microstructural and thermomechanical properties of the resulting compounds was systematically investigated. A better interface was found for dGTR than GTR, due to revulcanization in which the restored cross-link sites could form chemical bonds with the EPDM matrix; thus, energy absorption and strain at break increased. The possibility to produce novel environmentally friendly EPDM compounds with tailorable properties with respect to the neat matrix and with a lower cost and raw material amount has thus been demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rubber Chemistry and Technology
Rubber Chemistry and Technology 工程技术-高分子科学
CiteScore
3.50
自引率
20.00%
发文量
21
审稿时长
3.6 months
期刊介绍: The scope of RC&T covers: -Chemistry and Properties- Mechanics- Materials Science- Nanocomposites- Biotechnology- Rubber Recycling- Green Technology- Characterization and Simulation. Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.
期刊最新文献
FUNDAMENTAL APPROACH TO PREDICT TIRE AIR PRESSURE LOSS OVER TIME The Predictions And Verifications Of Universal Cooperative Relaxation And Diffusion In Materials A Modification of the Extended Tube Model (METM) for the Characterization of Filled Vulcanizates Development Of Hydrogenated Styrene Butadiene Rubber Based Vulcanizates With Superior Tyre Tread Performance Graphene as an Antioxidant and Antiozonant in Tire Sidewall Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1