{"title":"灰度图像的全局两阶段直方图均衡化方法","authors":"K. Almotairi","doi":"10.5614/10.5614/ITBJ.ICT.RES.APPL.2020.14.2.1","DOIUrl":null,"url":null,"abstract":"Digital image histogram equalization is an important technique in image processing to improve the quality of the visual appearance of images. However, the available methods suffer from several problems such as side effects and noise, brightness and contrast problems, loss of information and details, and failure in enhancement and in achieving the desired results. Therefore, the Adaptive Global Two-Stage Histogram Equalization (GTSHE) method for visual property enhancement of gray-level images is proposed. The first stage aims to clip the histogram and equalize the clipped histogram based on the number of occurrences of gray-level values. The second stage adaptively adjusts the space between occurrences by using a probability density function and different cumulative distribution functions that depend on the available and missing gray-level occurrences. Experiments were conducted using a number of benchmark datasets of images such as the Galaxies, Biomedical, Miscellaneous, Aerials, and Texture datasets. The results of the experiments were compared with a number of well-known methods, i.e. HE, AHEA, ESIHE, and MVSIHE, to evaluate the performance of the proposed method. The evaluation analysis showed that the proposed GTSHE method achieved a higher accuracy rate compared to the other methods.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Global Two-Stage Histogram Equalization Method for Gray-Level Images\",\"authors\":\"K. Almotairi\",\"doi\":\"10.5614/10.5614/ITBJ.ICT.RES.APPL.2020.14.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital image histogram equalization is an important technique in image processing to improve the quality of the visual appearance of images. However, the available methods suffer from several problems such as side effects and noise, brightness and contrast problems, loss of information and details, and failure in enhancement and in achieving the desired results. Therefore, the Adaptive Global Two-Stage Histogram Equalization (GTSHE) method for visual property enhancement of gray-level images is proposed. The first stage aims to clip the histogram and equalize the clipped histogram based on the number of occurrences of gray-level values. The second stage adaptively adjusts the space between occurrences by using a probability density function and different cumulative distribution functions that depend on the available and missing gray-level occurrences. Experiments were conducted using a number of benchmark datasets of images such as the Galaxies, Biomedical, Miscellaneous, Aerials, and Texture datasets. The results of the experiments were compared with a number of well-known methods, i.e. HE, AHEA, ESIHE, and MVSIHE, to evaluate the performance of the proposed method. The evaluation analysis showed that the proposed GTSHE method achieved a higher accuracy rate compared to the other methods.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/10.5614/ITBJ.ICT.RES.APPL.2020.14.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/10.5614/ITBJ.ICT.RES.APPL.2020.14.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Global Two-Stage Histogram Equalization Method for Gray-Level Images
Digital image histogram equalization is an important technique in image processing to improve the quality of the visual appearance of images. However, the available methods suffer from several problems such as side effects and noise, brightness and contrast problems, loss of information and details, and failure in enhancement and in achieving the desired results. Therefore, the Adaptive Global Two-Stage Histogram Equalization (GTSHE) method for visual property enhancement of gray-level images is proposed. The first stage aims to clip the histogram and equalize the clipped histogram based on the number of occurrences of gray-level values. The second stage adaptively adjusts the space between occurrences by using a probability density function and different cumulative distribution functions that depend on the available and missing gray-level occurrences. Experiments were conducted using a number of benchmark datasets of images such as the Galaxies, Biomedical, Miscellaneous, Aerials, and Texture datasets. The results of the experiments were compared with a number of well-known methods, i.e. HE, AHEA, ESIHE, and MVSIHE, to evaluate the performance of the proposed method. The evaluation analysis showed that the proposed GTSHE method achieved a higher accuracy rate compared to the other methods.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.