{"title":"基于右截尾数据的熵和熵估计:一种贝叶斯非参数方法","authors":"L. Al-Labadi, Muhammad Tahir","doi":"10.1515/mcma-2022-2123","DOIUrl":null,"url":null,"abstract":"Abstract Entropy and extropy are central measures in information theory. In this paper, Bayesian non-parametric estimators to entropy and extropy with possibly right censored data are proposed. The approach uses the beta-Stacy process and the difference operator. Examples are presented to illustrate the performance of the estimators.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"319 - 328"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of entropy and extropy based on right censored data: A Bayesian non-parametric approach\",\"authors\":\"L. Al-Labadi, Muhammad Tahir\",\"doi\":\"10.1515/mcma-2022-2123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Entropy and extropy are central measures in information theory. In this paper, Bayesian non-parametric estimators to entropy and extropy with possibly right censored data are proposed. The approach uses the beta-Stacy process and the difference operator. Examples are presented to illustrate the performance of the estimators.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"319 - 328\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Estimation of entropy and extropy based on right censored data: A Bayesian non-parametric approach
Abstract Entropy and extropy are central measures in information theory. In this paper, Bayesian non-parametric estimators to entropy and extropy with possibly right censored data are proposed. The approach uses the beta-Stacy process and the difference operator. Examples are presented to illustrate the performance of the estimators.