T. Shirai, Y. Enomoto, Masashi Watanabe, T. Arikawa
{"title":"日本台风预报模式物理选项的敏感性分析及其对风暴潮模拟的影响","authors":"T. Shirai, Y. Enomoto, Masashi Watanabe, T. Arikawa","doi":"10.1080/21664250.2022.2124040","DOIUrl":null,"url":null,"abstract":"ABSTRACT Weather Research and Forecasting (WRF) model is useful for forecasting typhoons as an external force of storm surge forecasts. This study examines the variation in typhoon forecasts caused by different choices of arbitrary physics options in WRF and their influence on storm surge forecasts. Eight frequently used combinations of cloud microphysics and planetary boundary layers were extracted via a review of previous studies. Subsequently, sensitivity analyses of these physics options were performed, targeting nine typhoons that landed in Japan during 2015–2019. Additionally, we conducted case studies of storm surge ensemble forecasts in Tokyo Bay and Osaka Bay using WRF-simulated typhoons generated in the sensitivity analysis. As a result, the ensemble mean of the forecasts was comparable to the storm surge reanalysis simulation results obtained using an empirical typhoon model wherein the best track data is integrated to reproduce atmospheric fields. This may be attributed to the fact that the typhoon parameters (intensity, size, approaching angle, and velocity) obtained from the best track at landfall were generally within the range of the parameters that were simulated using WRF.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitivity analysis of the physics options in the Weather Research and Forecasting model for typhoon forecasting in Japan and its impacts on storm surge simulations\",\"authors\":\"T. Shirai, Y. Enomoto, Masashi Watanabe, T. Arikawa\",\"doi\":\"10.1080/21664250.2022.2124040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Weather Research and Forecasting (WRF) model is useful for forecasting typhoons as an external force of storm surge forecasts. This study examines the variation in typhoon forecasts caused by different choices of arbitrary physics options in WRF and their influence on storm surge forecasts. Eight frequently used combinations of cloud microphysics and planetary boundary layers were extracted via a review of previous studies. Subsequently, sensitivity analyses of these physics options were performed, targeting nine typhoons that landed in Japan during 2015–2019. Additionally, we conducted case studies of storm surge ensemble forecasts in Tokyo Bay and Osaka Bay using WRF-simulated typhoons generated in the sensitivity analysis. As a result, the ensemble mean of the forecasts was comparable to the storm surge reanalysis simulation results obtained using an empirical typhoon model wherein the best track data is integrated to reproduce atmospheric fields. This may be attributed to the fact that the typhoon parameters (intensity, size, approaching angle, and velocity) obtained from the best track at landfall were generally within the range of the parameters that were simulated using WRF.\",\"PeriodicalId\":50673,\"journal\":{\"name\":\"Coastal Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21664250.2022.2124040\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2022.2124040","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Sensitivity analysis of the physics options in the Weather Research and Forecasting model for typhoon forecasting in Japan and its impacts on storm surge simulations
ABSTRACT Weather Research and Forecasting (WRF) model is useful for forecasting typhoons as an external force of storm surge forecasts. This study examines the variation in typhoon forecasts caused by different choices of arbitrary physics options in WRF and their influence on storm surge forecasts. Eight frequently used combinations of cloud microphysics and planetary boundary layers were extracted via a review of previous studies. Subsequently, sensitivity analyses of these physics options were performed, targeting nine typhoons that landed in Japan during 2015–2019. Additionally, we conducted case studies of storm surge ensemble forecasts in Tokyo Bay and Osaka Bay using WRF-simulated typhoons generated in the sensitivity analysis. As a result, the ensemble mean of the forecasts was comparable to the storm surge reanalysis simulation results obtained using an empirical typhoon model wherein the best track data is integrated to reproduce atmospheric fields. This may be attributed to the fact that the typhoon parameters (intensity, size, approaching angle, and velocity) obtained from the best track at landfall were generally within the range of the parameters that were simulated using WRF.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.