M. A. Hamza, Jaber S. Alzahrani, Amal Al-Rasheed, R. Alshahrani, M. Alamgeer, Abdelwahed Motwakel, Ishfaq Yaseen, Mohamed I. Eldesouki
{"title":"基于高光谱遥感影像的无人机最优全连接深度神经网络分类模型","authors":"M. A. Hamza, Jaber S. Alzahrani, Amal Al-Rasheed, R. Alshahrani, M. Alamgeer, Abdelwahed Motwakel, Ishfaq Yaseen, Mohamed I. Eldesouki","doi":"10.1080/07038992.2022.2116566","DOIUrl":null,"url":null,"abstract":"Abstract Unmanned Aerial Vehicle (UAV) is treated as an effective technique for gathering high resolution aerial images. The UAV based aerial image collection is highly preferred due to its inexpensive and effective nature. However, automatic classification of aerial images poses a major challenging issue in the design of UAV, which could be handled by the deep learning (DL) models. This study designs a novel UAV assisted DL based image classification model (UAVDL-ICM) for Industry 4.0 environment. The proposed UAVDL-ICM technique involves an ensemble of voting based three DL models, namely Residual network (ResNet), Inception with ResNetv2, and Densely Connected Networks (DenseNet). Also, the hyperparameter tuning of these DL models takes place using a genetic programming (GP) approach. Finally, Oppositional Water Wave Optimization (OWWO) with Fully Connected Deep Neural networks (FCDNN) is employed for the classification of aerial images. A wide range of simulations takes place and the results are examined in terms of different parameters. A detailed comparative study highlighted the betterment of the UAVDL-ICM technique compared to other recent approaches.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"681 - 693"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal and Fully Connected Deep Neural Networks Based Classification Model for Unmanned Aerial Vehicle Using Hyperspectral Remote Sensing Images\",\"authors\":\"M. A. Hamza, Jaber S. Alzahrani, Amal Al-Rasheed, R. Alshahrani, M. Alamgeer, Abdelwahed Motwakel, Ishfaq Yaseen, Mohamed I. Eldesouki\",\"doi\":\"10.1080/07038992.2022.2116566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Unmanned Aerial Vehicle (UAV) is treated as an effective technique for gathering high resolution aerial images. The UAV based aerial image collection is highly preferred due to its inexpensive and effective nature. However, automatic classification of aerial images poses a major challenging issue in the design of UAV, which could be handled by the deep learning (DL) models. This study designs a novel UAV assisted DL based image classification model (UAVDL-ICM) for Industry 4.0 environment. The proposed UAVDL-ICM technique involves an ensemble of voting based three DL models, namely Residual network (ResNet), Inception with ResNetv2, and Densely Connected Networks (DenseNet). Also, the hyperparameter tuning of these DL models takes place using a genetic programming (GP) approach. Finally, Oppositional Water Wave Optimization (OWWO) with Fully Connected Deep Neural networks (FCDNN) is employed for the classification of aerial images. A wide range of simulations takes place and the results are examined in terms of different parameters. A detailed comparative study highlighted the betterment of the UAVDL-ICM technique compared to other recent approaches.\",\"PeriodicalId\":48843,\"journal\":{\"name\":\"Canadian Journal of Remote Sensing\",\"volume\":\"48 1\",\"pages\":\"681 - 693\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07038992.2022.2116566\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2116566","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Optimal and Fully Connected Deep Neural Networks Based Classification Model for Unmanned Aerial Vehicle Using Hyperspectral Remote Sensing Images
Abstract Unmanned Aerial Vehicle (UAV) is treated as an effective technique for gathering high resolution aerial images. The UAV based aerial image collection is highly preferred due to its inexpensive and effective nature. However, automatic classification of aerial images poses a major challenging issue in the design of UAV, which could be handled by the deep learning (DL) models. This study designs a novel UAV assisted DL based image classification model (UAVDL-ICM) for Industry 4.0 environment. The proposed UAVDL-ICM technique involves an ensemble of voting based three DL models, namely Residual network (ResNet), Inception with ResNetv2, and Densely Connected Networks (DenseNet). Also, the hyperparameter tuning of these DL models takes place using a genetic programming (GP) approach. Finally, Oppositional Water Wave Optimization (OWWO) with Fully Connected Deep Neural networks (FCDNN) is employed for the classification of aerial images. A wide range of simulations takes place and the results are examined in terms of different parameters. A detailed comparative study highlighted the betterment of the UAVDL-ICM technique compared to other recent approaches.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.