考虑路径敏化的组合电路面积缩减

S. Abolmaali
{"title":"考虑路径敏化的组合电路面积缩减","authors":"S. Abolmaali","doi":"10.22068/IJEEE.17.3.1730","DOIUrl":null,"url":null,"abstract":"Area reduction of a circuit is a promising solution for decreasing the power consumption and the chip cost. Timing constraints should be preserved after a delay increase of resized circuit gates to guarantee proper circuit operation. Sensitization of paths should also be considered in timing analysis of circuit to prevent pessimistic resizing of circuit gates. In this work, a greedy area reduction algorithm is proposed which is pathbased and benefits well from viability analysis as the sensitization method. A proper metric based on viability conditions is presented to guide the algorithm towards selecting useful circuit nodes to be resized with acceptable performance and area reduction results. Instead of using gate slacks in resizing the candidate gates, all circuit gates are down-sized first and then the sizes of circuit gates that violate the circuit timing constraint are increased. This approach leads to considerable improvement in the complexity and performance of the proposed method. Results show that area improvement of about 88% is achievable. Comparison to a pessimistic method also reveals that on average 14.2% growth in area improvement is obtained by the presented method.","PeriodicalId":39055,"journal":{"name":"Iranian Journal of Electrical and Electronic Engineering","volume":"17 1","pages":"1730-1730"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Area Reduction of Combinational Circuits Considering Path Sensitization\",\"authors\":\"S. Abolmaali\",\"doi\":\"10.22068/IJEEE.17.3.1730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Area reduction of a circuit is a promising solution for decreasing the power consumption and the chip cost. Timing constraints should be preserved after a delay increase of resized circuit gates to guarantee proper circuit operation. Sensitization of paths should also be considered in timing analysis of circuit to prevent pessimistic resizing of circuit gates. In this work, a greedy area reduction algorithm is proposed which is pathbased and benefits well from viability analysis as the sensitization method. A proper metric based on viability conditions is presented to guide the algorithm towards selecting useful circuit nodes to be resized with acceptable performance and area reduction results. Instead of using gate slacks in resizing the candidate gates, all circuit gates are down-sized first and then the sizes of circuit gates that violate the circuit timing constraint are increased. This approach leads to considerable improvement in the complexity and performance of the proposed method. Results show that area improvement of about 88% is achievable. Comparison to a pessimistic method also reveals that on average 14.2% growth in area improvement is obtained by the presented method.\",\"PeriodicalId\":39055,\"journal\":{\"name\":\"Iranian Journal of Electrical and Electronic Engineering\",\"volume\":\"17 1\",\"pages\":\"1730-1730\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Electrical and Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJEEE.17.3.1730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJEEE.17.3.1730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

减小电路的面积是降低功耗和芯片成本的一种很有前途的解决方案。在调整大小的电路门延迟增加后,应保留时序约束,以保证电路正常运行。在电路的时序分析中还应考虑路径的敏化,以防止电路门的悲观调整。本文提出了一种基于路径的贪心面积缩减算法,该算法可以很好地利用可行性分析作为敏化方法。提出了一种基于生存条件的适当度量来指导算法选择有用的电路节点进行调整,以获得可接受的性能和面积缩减结果。在调整候选门的尺寸时,不是使用门松弛,而是首先减小所有电路门的尺寸,然后增加违反电路时序约束的电路门的尺寸。这种方法在复杂度和性能上有了很大的改进。结果表明,面积可提高约88%。与悲观方法的比较也表明,该方法的面积改善平均增长14.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Area Reduction of Combinational Circuits Considering Path Sensitization
Area reduction of a circuit is a promising solution for decreasing the power consumption and the chip cost. Timing constraints should be preserved after a delay increase of resized circuit gates to guarantee proper circuit operation. Sensitization of paths should also be considered in timing analysis of circuit to prevent pessimistic resizing of circuit gates. In this work, a greedy area reduction algorithm is proposed which is pathbased and benefits well from viability analysis as the sensitization method. A proper metric based on viability conditions is presented to guide the algorithm towards selecting useful circuit nodes to be resized with acceptable performance and area reduction results. Instead of using gate slacks in resizing the candidate gates, all circuit gates are down-sized first and then the sizes of circuit gates that violate the circuit timing constraint are increased. This approach leads to considerable improvement in the complexity and performance of the proposed method. Results show that area improvement of about 88% is achievable. Comparison to a pessimistic method also reveals that on average 14.2% growth in area improvement is obtained by the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Electrical and Electronic Engineering
Iranian Journal of Electrical and Electronic Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
13
审稿时长
12 weeks
期刊最新文献
Robust Operation Planning With Participation of Flexibility Resources Both on Generation and Demand Sides Under Uncertainty of Wind-based Generation Units A Novel Droop-based Control Strategy for Improving the Performance of VSC-MTDC Systems in Post-Contingency Conditions Securing Reliability Constrained Technology Combination for Isolated Micro-Grid Using Multi-Agent Based Optimization View-Invariant and Robust Gait Recognition Using Gait Energy Images of Leg Region and Masking Altered Sections Multiple Electricity Markets Competitiveness Undergoing Symmetric and Asymmetric Renewables Development Policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1