{"title":"二肽水凝胶稳定液-液界面的非线性膨胀流变","authors":"Fernando Carbonell-Aviñó, Paul S. Clegg","doi":"10.1007/s00397-022-01380-x","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the effects of salt concentration on the rheological properties of dipeptide hydrogel fibres at liquid-liquid interfaces. The interfaces were subjected to large amplitude oscillatory dilation (LAOD) experiments across a range of oscillation strains and frequencies. Lissajous plots of pressure-strain were used for characterizing the viscoelastic properties and for identifying apparent yielding. We show that key aspects of the rheological response of the interfaces vary significantly with salt concentration. At low strain, independent of salt concentration, Lissajous curves show an almost elliptical shape. As the strain is increased, asymmetry in Lissajous curves evidences a non-linear response. The departure from an ellipse is most obvious at negative strain (at moderate to high salt concentrations) and is suggestive of strain-hardening on compression. The Lissajous curves tilt towards the diagonal at elevated salt concentration demonstrating that the interfaces are becoming increasingly elastic. However, increasing the frequency of the oscillation has little systematic effect. We infer that the addition of salt leads to the development of structure on the interfaces from our observations strain-hardening and of the increasingly elastic response. To fully capture the range of behaviour, we suggest a modification of the analysis to calculate the strain-hardening ratio <i>S</i> used to quantify the degree of non-linearities from Lissajous figures, so as to better reveal the presence of instant strain-softening and strain-hardening responses.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"62 1","pages":"45 - 55"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-022-01380-x.pdf","citationCount":"1","resultStr":"{\"title\":\"Non-linear dilational rheology of liquid-liquid interfaces stabilized by dipeptide hydrogels\",\"authors\":\"Fernando Carbonell-Aviñó, Paul S. Clegg\",\"doi\":\"10.1007/s00397-022-01380-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the effects of salt concentration on the rheological properties of dipeptide hydrogel fibres at liquid-liquid interfaces. The interfaces were subjected to large amplitude oscillatory dilation (LAOD) experiments across a range of oscillation strains and frequencies. Lissajous plots of pressure-strain were used for characterizing the viscoelastic properties and for identifying apparent yielding. We show that key aspects of the rheological response of the interfaces vary significantly with salt concentration. At low strain, independent of salt concentration, Lissajous curves show an almost elliptical shape. As the strain is increased, asymmetry in Lissajous curves evidences a non-linear response. The departure from an ellipse is most obvious at negative strain (at moderate to high salt concentrations) and is suggestive of strain-hardening on compression. The Lissajous curves tilt towards the diagonal at elevated salt concentration demonstrating that the interfaces are becoming increasingly elastic. However, increasing the frequency of the oscillation has little systematic effect. We infer that the addition of salt leads to the development of structure on the interfaces from our observations strain-hardening and of the increasingly elastic response. To fully capture the range of behaviour, we suggest a modification of the analysis to calculate the strain-hardening ratio <i>S</i> used to quantify the degree of non-linearities from Lissajous figures, so as to better reveal the presence of instant strain-softening and strain-hardening responses.</p></div>\",\"PeriodicalId\":755,\"journal\":{\"name\":\"Rheologica Acta\",\"volume\":\"62 1\",\"pages\":\"45 - 55\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00397-022-01380-x.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheologica Acta\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00397-022-01380-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-022-01380-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Non-linear dilational rheology of liquid-liquid interfaces stabilized by dipeptide hydrogels
We investigate the effects of salt concentration on the rheological properties of dipeptide hydrogel fibres at liquid-liquid interfaces. The interfaces were subjected to large amplitude oscillatory dilation (LAOD) experiments across a range of oscillation strains and frequencies. Lissajous plots of pressure-strain were used for characterizing the viscoelastic properties and for identifying apparent yielding. We show that key aspects of the rheological response of the interfaces vary significantly with salt concentration. At low strain, independent of salt concentration, Lissajous curves show an almost elliptical shape. As the strain is increased, asymmetry in Lissajous curves evidences a non-linear response. The departure from an ellipse is most obvious at negative strain (at moderate to high salt concentrations) and is suggestive of strain-hardening on compression. The Lissajous curves tilt towards the diagonal at elevated salt concentration demonstrating that the interfaces are becoming increasingly elastic. However, increasing the frequency of the oscillation has little systematic effect. We infer that the addition of salt leads to the development of structure on the interfaces from our observations strain-hardening and of the increasingly elastic response. To fully capture the range of behaviour, we suggest a modification of the analysis to calculate the strain-hardening ratio S used to quantify the degree of non-linearities from Lissajous figures, so as to better reveal the presence of instant strain-softening and strain-hardening responses.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."