R. Kosheleva, T. Karapantsios, M. Kostoglou, A. Mitropoulos
{"title":"旋转对气体吸附影响的热力学分析","authors":"R. Kosheleva, T. Karapantsios, M. Kostoglou, A. Mitropoulos","doi":"10.1515/jnet-2022-0086","DOIUrl":null,"url":null,"abstract":"Abstract This study examines the effect of a short term rotation on a system of constant volume. Adsorption of CO2 is performed on Activated Carbon (AC) at 281, 293 and 298 K with a special designed device that allows rotation. The adsorption isotherms were conducted up to 10 bar for both No Rotational (NoROT) and Rotational (ROT) cases. The ROT case refers to 60 s of rotation at 5000 rpm. The experimental results were fitted to Langmuir as well as to Dubinin–Astakhov (D–A) models with the latter presenting the best fit. A detailed thermodynamic analysis is performed in order to quantify the overall contribution of the rotation on gas adsorption compared to static case. For the ROT case, the maximum amount adsorbed (q max) is by 12 % higher than the NoROT counterpart, while a decrease in chemical potential as surface loading is increased, indicates that the process after rotation is entropy driven. The outcome of this work suggests that rotation enables gas molecules to access previously inaccessible sites, thus gaining more vacancies due to better rearrangement of the adsorbed CO2 molecules.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic analysis of the effect of rotation on gas adsorption\",\"authors\":\"R. Kosheleva, T. Karapantsios, M. Kostoglou, A. Mitropoulos\",\"doi\":\"10.1515/jnet-2022-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study examines the effect of a short term rotation on a system of constant volume. Adsorption of CO2 is performed on Activated Carbon (AC) at 281, 293 and 298 K with a special designed device that allows rotation. The adsorption isotherms were conducted up to 10 bar for both No Rotational (NoROT) and Rotational (ROT) cases. The ROT case refers to 60 s of rotation at 5000 rpm. The experimental results were fitted to Langmuir as well as to Dubinin–Astakhov (D–A) models with the latter presenting the best fit. A detailed thermodynamic analysis is performed in order to quantify the overall contribution of the rotation on gas adsorption compared to static case. For the ROT case, the maximum amount adsorbed (q max) is by 12 % higher than the NoROT counterpart, while a decrease in chemical potential as surface loading is increased, indicates that the process after rotation is entropy driven. The outcome of this work suggests that rotation enables gas molecules to access previously inaccessible sites, thus gaining more vacancies due to better rearrangement of the adsorbed CO2 molecules.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2022-0086\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2022-0086","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Thermodynamic analysis of the effect of rotation on gas adsorption
Abstract This study examines the effect of a short term rotation on a system of constant volume. Adsorption of CO2 is performed on Activated Carbon (AC) at 281, 293 and 298 K with a special designed device that allows rotation. The adsorption isotherms were conducted up to 10 bar for both No Rotational (NoROT) and Rotational (ROT) cases. The ROT case refers to 60 s of rotation at 5000 rpm. The experimental results were fitted to Langmuir as well as to Dubinin–Astakhov (D–A) models with the latter presenting the best fit. A detailed thermodynamic analysis is performed in order to quantify the overall contribution of the rotation on gas adsorption compared to static case. For the ROT case, the maximum amount adsorbed (q max) is by 12 % higher than the NoROT counterpart, while a decrease in chemical potential as surface loading is increased, indicates that the process after rotation is entropy driven. The outcome of this work suggests that rotation enables gas molecules to access previously inaccessible sites, thus gaining more vacancies due to better rearrangement of the adsorbed CO2 molecules.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.