{"title":"边缘器件上基于神经网络推理的忆阻器横条阵列容SAF和变异映射方法","authors":"Yu Ma, Linfeng Zheng, Pingqiang Zhou","doi":"10.1145/3585518","DOIUrl":null,"url":null,"abstract":"There is an increasing demand for running neural network inference on edge devices. Memristor crossbar array (MCA) based accelerators can be used to accelerate neural networks on edge devices. However, reliability issues in memristors, such as stuck-at faults (SAF) and variations, lead to weight deviation of neural networks and therefore have a severe influence on inference accuracy. In this work, we focus on the reliability issues in memristors for edge devices. We formulate the reliability problem as a 0–1 programming problem, based on the analysis of sum weight variation (SWV). In order to solve the problem, we simplify the problem with an approximation - different columns have the same weights, based on our observation of the weight distribution. Then we propose an effective mapping method to solve the simplified problem. We evaluate our proposed method with two neural network applications on two datasets. The experimental results on the classification application show that our proposed method can recover 95% accuracy considering SAF defects and can increase by up to 60% accuracy with variation σ =0.4. The results of the neural rendering application show that our proposed method can prevent render quality reduction.","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"19 1","pages":"1 - 21"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mapping Method Tolerating SAF and Variation for Memristor Crossbar Array Based Neural Network Inference on Edge Devices\",\"authors\":\"Yu Ma, Linfeng Zheng, Pingqiang Zhou\",\"doi\":\"10.1145/3585518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an increasing demand for running neural network inference on edge devices. Memristor crossbar array (MCA) based accelerators can be used to accelerate neural networks on edge devices. However, reliability issues in memristors, such as stuck-at faults (SAF) and variations, lead to weight deviation of neural networks and therefore have a severe influence on inference accuracy. In this work, we focus on the reliability issues in memristors for edge devices. We formulate the reliability problem as a 0–1 programming problem, based on the analysis of sum weight variation (SWV). In order to solve the problem, we simplify the problem with an approximation - different columns have the same weights, based on our observation of the weight distribution. Then we propose an effective mapping method to solve the simplified problem. We evaluate our proposed method with two neural network applications on two datasets. The experimental results on the classification application show that our proposed method can recover 95% accuracy considering SAF defects and can increase by up to 60% accuracy with variation σ =0.4. The results of the neural rendering application show that our proposed method can prevent render quality reduction.\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\"19 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3585518\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3585518","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Mapping Method Tolerating SAF and Variation for Memristor Crossbar Array Based Neural Network Inference on Edge Devices
There is an increasing demand for running neural network inference on edge devices. Memristor crossbar array (MCA) based accelerators can be used to accelerate neural networks on edge devices. However, reliability issues in memristors, such as stuck-at faults (SAF) and variations, lead to weight deviation of neural networks and therefore have a severe influence on inference accuracy. In this work, we focus on the reliability issues in memristors for edge devices. We formulate the reliability problem as a 0–1 programming problem, based on the analysis of sum weight variation (SWV). In order to solve the problem, we simplify the problem with an approximation - different columns have the same weights, based on our observation of the weight distribution. Then we propose an effective mapping method to solve the simplified problem. We evaluate our proposed method with two neural network applications on two datasets. The experimental results on the classification application show that our proposed method can recover 95% accuracy considering SAF defects and can increase by up to 60% accuracy with variation σ =0.4. The results of the neural rendering application show that our proposed method can prevent render quality reduction.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors