{"title":"钎焊填充金属","authors":"Matthew Way, J. Willingham, R. Goodall","doi":"10.1080/09506608.2019.1613311","DOIUrl":null,"url":null,"abstract":"ABSTRACT Brazing is a 5000-year-old joining process which still meets advanced joining challenges today. In brazing, components are joined by heating above the melting point of a filler metal placed between them; on solidification a joint is formed. It provides unique advantages over other joining methods, including the ability to join dissimilar material combinations (including metal-ceramic joints), with limited microstructural evolution; producing joints of relatively high strength which are often electrically and thermally conductive. Current interest in brazing is widespread with filler metal development key to enabling a range of future technologies including; fusion energy, Solid Oxide Fuel Cells and nanoelectronics, whilst also assisting the advancement of established fields, such as automotive lightweighting, by tackling the challenges associated with joining aluminium to steels. This review discusses the theory and practice of brazing, with particular reference to filler metals, and covers progress in, and opportunities for, advanced filler metal development.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"65 1","pages":"257 - 285"},"PeriodicalIF":16.8000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2019.1613311","citationCount":"62","resultStr":"{\"title\":\"Brazing filler metals\",\"authors\":\"Matthew Way, J. Willingham, R. Goodall\",\"doi\":\"10.1080/09506608.2019.1613311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Brazing is a 5000-year-old joining process which still meets advanced joining challenges today. In brazing, components are joined by heating above the melting point of a filler metal placed between them; on solidification a joint is formed. It provides unique advantages over other joining methods, including the ability to join dissimilar material combinations (including metal-ceramic joints), with limited microstructural evolution; producing joints of relatively high strength which are often electrically and thermally conductive. Current interest in brazing is widespread with filler metal development key to enabling a range of future technologies including; fusion energy, Solid Oxide Fuel Cells and nanoelectronics, whilst also assisting the advancement of established fields, such as automotive lightweighting, by tackling the challenges associated with joining aluminium to steels. This review discusses the theory and practice of brazing, with particular reference to filler metals, and covers progress in, and opportunities for, advanced filler metal development.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"65 1\",\"pages\":\"257 - 285\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09506608.2019.1613311\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2019.1613311\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2019.1613311","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
ABSTRACT Brazing is a 5000-year-old joining process which still meets advanced joining challenges today. In brazing, components are joined by heating above the melting point of a filler metal placed between them; on solidification a joint is formed. It provides unique advantages over other joining methods, including the ability to join dissimilar material combinations (including metal-ceramic joints), with limited microstructural evolution; producing joints of relatively high strength which are often electrically and thermally conductive. Current interest in brazing is widespread with filler metal development key to enabling a range of future technologies including; fusion energy, Solid Oxide Fuel Cells and nanoelectronics, whilst also assisting the advancement of established fields, such as automotive lightweighting, by tackling the challenges associated with joining aluminium to steels. This review discusses the theory and practice of brazing, with particular reference to filler metals, and covers progress in, and opportunities for, advanced filler metal development.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.