采用新的滑移铸造方法制备的新型Y-TZP和ATZ陶瓷的两体耐磨性和疲劳寿命。

J. Roulet, M. Sinhoreti, S.O.L.I.M.A.R.O.L.I.V.E.I.R.A. Pontes, M. Rocha
{"title":"采用新的滑移铸造方法制备的新型Y-TZP和ATZ陶瓷的两体耐磨性和疲劳寿命。","authors":"J. Roulet, M. Sinhoreti, S.O.L.I.M.A.R.O.L.I.V.E.I.R.A. Pontes, M. Rocha","doi":"10.2139/ssrn.4191229","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nDental zirconium oxide restorations are milled from pre-sintered blocks or disks which are produced either with high isostatic pressure (HIP) or, simpler, a slurry technique. The objective was to perform a fatigue test and an in vitro wear simulation of two ceramics, yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramic and a hybrid zirconium oxide-aluminum oxide ceramic, (ATZ) both produced either the classical way using high isostatic pressure (HIP, control) or with a slurry technique.\n\n\nMATERIALS AND METHODS\nTen discs/group were subjected to a cyclic biaxial fatigue test using a staircase approach under water at 37 °C in a dynamic universal testing machine. The 2-body wear test was performed on eight lapped 12 mm thick cylindrical samples subjected to spherical (ø 6 mm) leucite ceramic antagonists in a CS-4 chewing simulator at 49 N force and 0.7 mm lateral movement for 600 k cycles and 4167 thermal cycles (5-55 °C). Volumetric wear was calculated based on laser-scanned surfaces. Selected samples of both tests were viewed in SEM.\n\n\nRESULTS\nAll the ceramic specimens produced using the HIP method survived up to 1.2 M cycles with the maximum load of the equipment (1000 N) loading the specimens up to 1527 MPa. The fatigue limit stress at 1.2 M cycles for the Slurry ATZ samples was 946 MPa. For the Slurry Y-TZP samples the fatigue limit stress at 1.2 M cycles was 658 MPa. At 600 k cycles, all zirconium oxide ceramics showed no measurable wear and had a highly polished appearance. The leucite ceramic antagonists wear developed in a linear way. There was no difference between the materials produced with the slurry and the HIP process. ATZ ceramic produced significantly more wear than 3Y- TZP ceramic.\n\n\nCONCLUSIONS\nThe HIP method provided higher fatigue strength than the Slurry manufacturing method. All HIP ceramics surpassed the limit threshold (1527 MPa) of the testing machine. The tested ceramics did not show any measurable wear but had worn the leucite reinforced glass ceramic antagonists for a considerable amount.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"136 1","pages":"105535"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-body wear resistance and fatigue survival of new Y-TZP and ATZ ceramics made with a new slip-casting method.\",\"authors\":\"J. Roulet, M. Sinhoreti, S.O.L.I.M.A.R.O.L.I.V.E.I.R.A. Pontes, M. Rocha\",\"doi\":\"10.2139/ssrn.4191229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nDental zirconium oxide restorations are milled from pre-sintered blocks or disks which are produced either with high isostatic pressure (HIP) or, simpler, a slurry technique. The objective was to perform a fatigue test and an in vitro wear simulation of two ceramics, yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramic and a hybrid zirconium oxide-aluminum oxide ceramic, (ATZ) both produced either the classical way using high isostatic pressure (HIP, control) or with a slurry technique.\\n\\n\\nMATERIALS AND METHODS\\nTen discs/group were subjected to a cyclic biaxial fatigue test using a staircase approach under water at 37 °C in a dynamic universal testing machine. The 2-body wear test was performed on eight lapped 12 mm thick cylindrical samples subjected to spherical (ø 6 mm) leucite ceramic antagonists in a CS-4 chewing simulator at 49 N force and 0.7 mm lateral movement for 600 k cycles and 4167 thermal cycles (5-55 °C). Volumetric wear was calculated based on laser-scanned surfaces. Selected samples of both tests were viewed in SEM.\\n\\n\\nRESULTS\\nAll the ceramic specimens produced using the HIP method survived up to 1.2 M cycles with the maximum load of the equipment (1000 N) loading the specimens up to 1527 MPa. The fatigue limit stress at 1.2 M cycles for the Slurry ATZ samples was 946 MPa. For the Slurry Y-TZP samples the fatigue limit stress at 1.2 M cycles was 658 MPa. At 600 k cycles, all zirconium oxide ceramics showed no measurable wear and had a highly polished appearance. The leucite ceramic antagonists wear developed in a linear way. There was no difference between the materials produced with the slurry and the HIP process. ATZ ceramic produced significantly more wear than 3Y- TZP ceramic.\\n\\n\\nCONCLUSIONS\\nThe HIP method provided higher fatigue strength than the Slurry manufacturing method. All HIP ceramics surpassed the limit threshold (1527 MPa) of the testing machine. The tested ceramics did not show any measurable wear but had worn the leucite reinforced glass ceramic antagonists for a considerable amount.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"136 1\",\"pages\":\"105535\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4191229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4191229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基础氧化锆修复体是由预烧结块或盘磨成的,这些块或盘是用高等静压(HIP)或更简单的泥浆技术生产的。目的是对两种陶瓷,钇稳定的四方氧化锆多晶(3Y-TZP)陶瓷和氧化锆-氧化铝混合陶瓷(ATZ)进行疲劳测试和体外磨损模拟,这两种陶瓷都是使用高等静压(HIP,控制)或浆液技术生产的经典方法。材料与方法在动态万能试验机中,对10个圆盘/组进行了37℃水下阶梯式双轴循环疲劳试验。在CS-4咀嚼模拟器中,8个12 mm厚的圆柱形样品在49 N的力和0.7 mm的横向运动下,在600 k循环和4167个热循环(5-55°C)下进行了两体磨损试验。基于激光扫描表面计算体积磨损。在扫描电镜中观察两个试验的选定样品。结果在设备最大载荷(1000 N)为1527 MPa的情况下,采用HIP法制备的陶瓷试样均可存活1.2 M次循环。1.2 M循环时,ATZ试样的疲劳极限应力为946 MPa。泥浆Y-TZP试样在1.2 M循环下的疲劳极限应力为658 MPa。在600 k的循环中,所有氧化锆陶瓷都没有可测量的磨损,并且具有高度抛光的外观。白白石陶瓷拮抗剂磨损呈线性发展。用浆料和HIP工艺生产的材料没有区别。ATZ陶瓷比3Y- TZP陶瓷产生更大的磨损。结论HIP法比浆料法具有更高的疲劳强度。所有HIP陶瓷均超过了试验机的极限阈值(1527 MPa)。测试的陶瓷没有显示出任何可测量的磨损,但对白晶石增强玻璃陶瓷拮抗剂的磨损相当大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-body wear resistance and fatigue survival of new Y-TZP and ATZ ceramics made with a new slip-casting method.
BACKGROUND Dental zirconium oxide restorations are milled from pre-sintered blocks or disks which are produced either with high isostatic pressure (HIP) or, simpler, a slurry technique. The objective was to perform a fatigue test and an in vitro wear simulation of two ceramics, yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramic and a hybrid zirconium oxide-aluminum oxide ceramic, (ATZ) both produced either the classical way using high isostatic pressure (HIP, control) or with a slurry technique. MATERIALS AND METHODS Ten discs/group were subjected to a cyclic biaxial fatigue test using a staircase approach under water at 37 °C in a dynamic universal testing machine. The 2-body wear test was performed on eight lapped 12 mm thick cylindrical samples subjected to spherical (ø 6 mm) leucite ceramic antagonists in a CS-4 chewing simulator at 49 N force and 0.7 mm lateral movement for 600 k cycles and 4167 thermal cycles (5-55 °C). Volumetric wear was calculated based on laser-scanned surfaces. Selected samples of both tests were viewed in SEM. RESULTS All the ceramic specimens produced using the HIP method survived up to 1.2 M cycles with the maximum load of the equipment (1000 N) loading the specimens up to 1527 MPa. The fatigue limit stress at 1.2 M cycles for the Slurry ATZ samples was 946 MPa. For the Slurry Y-TZP samples the fatigue limit stress at 1.2 M cycles was 658 MPa. At 600 k cycles, all zirconium oxide ceramics showed no measurable wear and had a highly polished appearance. The leucite ceramic antagonists wear developed in a linear way. There was no difference between the materials produced with the slurry and the HIP process. ATZ ceramic produced significantly more wear than 3Y- TZP ceramic. CONCLUSIONS The HIP method provided higher fatigue strength than the Slurry manufacturing method. All HIP ceramics surpassed the limit threshold (1527 MPa) of the testing machine. The tested ceramics did not show any measurable wear but had worn the leucite reinforced glass ceramic antagonists for a considerable amount.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterisation and modelling of continuous electrospun poly(ɛ- caprolactone) filaments for biological tissue repair. TiNbSn alloy plates with low Young's modulus modulates interfragmentary movement and promote osteosynthesis in rat femur. Evaluation of flexural strength of additively manufactured resin materials compared to auto-polymerized provisional resin with and without hydrothermal aging. A Novel non-invasive optical framework for simultaneous analysis of contractility and calcium in single-cell cardiomyocytes. Influence of CAD/CAM diamond bur wear on the accuracy and surface roughness of dental ceramic restorations: A systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1